

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic I

Second Class

Chapter02: Diode Applications Lec02_p2 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Diode Applications

Diodes are used in many applications:

(a) Rectifiers
(b) Clippers or Limiters
(c) Clampers
(d) Voltage Multipliers

Fundumental of Electronic I Msc: Munther Naif Thiyab

Sinusoidal Inputs: Half-Wave Rectification

Half-wave Rectifier

Fundumental of Electronic I Msc: Munther Naif Thiyab

Sinusoidal Inputs: Half-Wave Rectification

 \Box For t= 0 \rightarrow T/2, the diode is on.

Diode is substituted with short-circuit equivalence for ideal diode

(reduce complexity).

Conduction region (0 \rightarrow T/2).

Fundumental of Electronic I Msc: Munther Naif Thiyab

Sinusoidal Inputs: Half-Wave Rectification

 \Box For the period T/2 \rightarrow T, the diode is off.

Diode is substituted with an open circuit.

Nonconduction region (T/2 \rightarrow T).

Fundumental of Electronic I Msc: Munther Naif Thiyab

Sinusoidal Inputs: Half-Wave Rectification

Fundumental of Electronic I Msc: Munther Naif Thiyab

Sinusoidal Inputs: Half-Wave Rectification

The effect of using a silicon diode with $V_{K}=0.7$ is shown.

□The diode is "on" when the applied signal is at least 0.7 V.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Example 2.16

- a) Sketch dc output v_0 and determine the dc level of the output.
- b) Repeat (a) if the ideal diode is replaced by silicon diode.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

PIV (PRV)

Because the diode is only forward biased for one-half of the AC cycle, it is also reverse biased for one-half cycle.

It is important that the reverse breakdown voltage rating of the diode be high enough to withstand the peak, reverse-biasing AC voltage and avoid entering the Zener region.

PIV (or **PRV**) > V_m

- **PIV** = **Peak inverse voltage**
- **PRV** = **Peak** reverse voltage
- V_m = Peak AC voltage

Fundumental of Electronic I Msc: Munther Naif Thiyab

Full-Wave Rectification

The rectification process can be improved by using a full-wave rectifier circuit.

□Full-wave rectification produces a greater DC output:

- Half-wave: $V_{dc} = 0.318 V_m$
- Full-wave: $V_{dc} = 0.636 V_m$

Fundumental of Electronic I Msc: Munther Naif Thiyab

12

Full-Wave Rectification – Bridge Network

Conduction path for the positive region of v_i

Fundumental of Electronic I Msc: Munther Naif Thiyab

Full-Wave Rectification – Bridge Network

The DC level is now twice that of half wave rectifier= $2(0.318V_m)$

 $V_{DC} = 0.636 V_{m}$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Full-Wave Rectification – Bridge Network

If silicon diode is used,

$$V_i - V_K - V_o - V_K = 0$$
$$V_o = V_i - 2V_K$$

 $V_{o max} = V_m - 2V_K$ For $V_m >> 2V_k$: $V_{DC} \approx 0.636 (V_m - 2V_K)$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Network conditions for the positive region of v_i

Fundumental of Electronic I Msc: Munther Naif Thiyab

Summary of Rectifier Circuits

Rectifier	Ideal V _{DC}	Realistic V _{DC}
Half Wave Rectifier	$V_{\rm DC} = 0.318 V_m$	$V_{\rm DC} = 0.318(V_m - 0.7)$
Bridge Rectifier	$V_{\rm DC} = 0.636 V_m$	$V_{\rm DC} = 0.636(V_m - 2(0.7))$
Center-Tapped Transformer Rectifier	$V_{\rm DC} = 0.636 V_m$	$V_{\rm DC} = 0.636(V_m - 0.7)$

 V_m = peak of the AC voltage.

In the center tapped transformer rectifier circuit, the peak AC voltage is the transformer secondary voltage to the tap.

Example 2.17

Determine the output waveform for the network and calculate the output dc level.

Solution

Fundumental of Electronic I Msc: Munther Naif Thiyab

Example 2.17 - Solution

Fundumental of Electronic I Msc: Munther Naif Thiyab

Full Wave Rectifier with Smoothing Capacitor (AC to DC Converter)

