University of Anbar
College of Engineering
Dams \& Water Resources Eng. Dept.

Calculus I
Dr. Ahmed T. Noaman
Dr. Ghassan S. Jamil
Phase: 1

NATURAL LOGARITHMS

The logarithm with base is called the natural logarithm and has a special notation:

8

$$
\ln x=y \quad \Longleftrightarrow \quad e^{y}=x
$$

$$
\begin{array}{rl}
\ln \left(e^{x}\right)=x & x \in \mathbb{R} \\
e^{\ln x}=x & x>0
\end{array}
$$

In particular, if we set $x=1$, we get

$$
\ln e=1
$$

x	$y=\ln x$
0	∞
1	0
2	0.693
3	1.098
4	1.386
5	1.609
-1	∞
0.9	-0.105
0.5	-0.693
0.2	-1.609
0.1	-2.302

EXAMPLE 7 Find x if $\ln x=5$.
SOLUTION 1 From (8) we see that

$$
\ln x=5 \quad \text { means } \quad e^{5}=x
$$

Therefore $x=e^{5}$.
(If you have trouble working with the "ln" notation, just replace it by $\log _{e}$. Then the equation becomes $\log _{e} x=5$; so, by the definition of logarithm, $e^{3}=x$.)
SOLUTION 2 Start with the equation

$$
\ln x=5
$$

and apply the exponential function to both sides of the equation:

$$
e^{\ln x}=e^{5}
$$

But the second cancellation equation in (9) says that $e^{\ln x}=x$. Therefore $x=e^{5}$.

EXAMPLE 8 Solve the equation $e^{5-3 x}=10$.
SOLUTION We take natural logarithms of both sides of the equation and use (9):

$$
\begin{aligned}
\ln \left(e^{3-3 x}\right) & =\ln 10 \\
5-3 x & =\ln 10 \\
3 x & =5-\ln 10 \\
x & =\frac{1}{3}(5-\ln 10)
\end{aligned}
$$

Since the natural logarithm is found on scientific calculators, we can approximate the solution: to four decimal places, $x \approx 0.8991$.

2. Algebra of functions

Let f is a fynction of x then we get $f(x)$ and g is a function of x also we get $g(x)$
Df is the domain of $f(x)$
Dg is the domain of $\mathrm{g}(\mathrm{x})$
Then:
$f+g=f(x)+g(x)$ and $D f \cap D g$
$f-g=f(x)-g(x)$
$f . g=f(x) \cdot g(x)$

and the domain is as same before
if f / g then $\mathrm{Df} \cap \operatorname{Dg}$ but $\mathrm{g}(\mathrm{x}) \neq 0$
if g / f then $\operatorname{Dg} \cap \operatorname{Df}$ but $f(x) \neq 0$
and $\mathrm{Df}_{0} g=\{\mathrm{x}: \mathrm{x} \in \mathrm{Dg}, \mathrm{g}(\mathrm{x}) \in \mathrm{Df}\}$
where
$f_{0} g(x)=f(g(x)) \quad$ also called the composition of f and g

Example 8: Find $\mathrm{f}_{0} \mathrm{~g}$ and $\mathrm{g}_{\mathrm{o}} \mathrm{f}$ if $f_{(x)}=\sqrt{1-x}$ and $g_{(x)}=\sqrt{5+x}$

Solution
$\left(\mathrm{f}_{\mathrm{o}} \mathrm{g}\right) \mathrm{x}=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}(\sqrt{5+x})=\sqrt{1-\sqrt{5+x}}$
$(1-x) \geq 0$ then $x \leq 1$ Df: $x \leq 1$
$5+x \geq 0$ then $x \geq-5 \mathrm{Dg}: x \geq-5$
$D \mathrm{f}_{\mathrm{o}} \mathrm{g}=\{\mathrm{x}: \mathrm{x} \geq-5, \sqrt{5+x} \leq 1\}=\{\mathrm{x}:-5 \leq \mathrm{x} \leq-4\}$

Example 11: Given $F(x)=\cos ^{2}(x+9)$, find functions f, g, and h such that $F=f \circ g \circ h$.
Solution Since $F(x)=[\cos (x+9)]^{2}$, the formula for F says: First add 9 , then take the cosine of the result, and finally square. So we let

$$
h(x)=x+9 \quad g(x)=\cos x \quad f(x)=x^{2}
$$

Then

$$
\begin{aligned}
(f \circ g \circ h)(x) & =f(g(h(x)))=f(g(x+9))=f(\cos (x+9)) \\
& =[\cos (x+9)]^{2}=F(x)
\end{aligned}
$$

Example 9: If $f_{(x)}=\sqrt{x}$ and $g_{(x)}=\sqrt{1-x}$
Find:
$f+g, f-g, g-f, f_{\circ} g, f / g, g / f$ then graph $f_{\circ} g$ and also $f+g$.
Solution
$f_{(x)}=\sqrt{x} \quad$ domain $\mathrm{x} \geq 0$
$g_{(x)}=\sqrt{1-x}$ domain $\mathrm{x} \leq 1$

$\mathrm{f}+\mathrm{g}=(\mathrm{f}+\mathrm{g}) \mathrm{x}=\sqrt{x}+\sqrt{1-x}$	domain $0 \leq \mathrm{x} \leq 1$ or $[0,1]$	
$\mathrm{f}-\mathrm{g}=\sqrt{x}-\sqrt{1-x}$	domain $0 \leq \mathrm{x} \leq 1$	
$\mathrm{~g}-\mathrm{f}=\sqrt{1-x}-\sqrt{x}$	domain $0 \leq \mathrm{x} \leq 1$	
$\mathrm{f}_{\mathrm{o}} \mathrm{g}=\mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{f}(\sqrt{1-x})=\sqrt{\sqrt{1-x}}=\sqrt[4]{1-x}$	domain $(-\infty, 1]$ (why?)	
$\mathrm{f} / \mathrm{g}=\mathrm{f}(\mathrm{x}) / \mathrm{g}(\mathrm{x})=\sqrt{\frac{x}{1-x}}$	domain $(-\infty, 1]$	
$\mathrm{g} / \mathrm{f}=\mathrm{g}(\mathrm{x}) / \mathrm{f}(\mathrm{x})=\sqrt{\frac{1-x}{x}}$	domain	$(0,1]$

Inverse functions

A function that undoes, or inverts, the effect of a function f is called the inverse of f. Many common functions, though not all, are paired with an inverse. In this section we present the natural logarithmic function $y=\ln x$ as the inverse of the exponential function $y=e^{x}$, and we also give examples of several inverse trigonometric functions.

DEFINITION Suppose that f is a one-to-one function on a domain D with range R. The inverse function f^{-1} is defined by

$$
f^{-1}(b)=a \quad \text { if } \quad f(a)=b
$$

The domain of f^{-1} is R and the range of f^{-1} is D.

Example 10:

Suppose a one-to-one function $y=f(x)$ is given by a table of values

\boldsymbol{x}	1	2	3	4	5	6	7	8
$\boldsymbol{f}(\boldsymbol{x})$	3	4.5	7	10.5	15	20.5	27	34.5

A table for the values of $x=f^{-1}(y)$ can then be obtained by simply interchanging the values in the columns (or rows) of the table for f :

\boldsymbol{y}	3	4.5	7	10.5	15	20.5	27	34.5
$\boldsymbol{f}^{-\mathbf{1}}(\boldsymbol{y})$	1	2	3	4	5	6	7	8

Note:

Only a one-to-one function can have an inverse

Q: What is the one to one function?

DEFINITION A function $f(x)$ is one-to-one on a domain D if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$ in D.

Note

```
domain of \(f^{-1}=\) range of \(f\)
    range of \(f^{-1}=\) domain of \(f\)
```

two functions have the same values on the smaller domain, so the original function is an extension of the restricted function from its smaller domain to the larger domain.
(a) $f(x)=\sqrt{x}$ is one-to-one on any domain of nonnegative numbers because $\sqrt{x_{1}} \neq$ $\sqrt{x_{2}}$ whenever $x_{1} \neq x_{2}$.
(b) $g(x)=\sin x$ is not one-to-one on the interval $[0, \pi]$ because $\sin (\pi / 6)=\sin (5 \pi / 6)$. In fact, for each element x_{1} in the subinterval $[0, \pi / 2)$ there is a corresponding element x_{2} in the subinterval $(\pi / 2, \pi]$ satisfying $\sin x_{1}=\sin x_{2}$, so distinct elements in the domain are assigned to the same value in the range. The sine function is one-toone on $[0, \pi / 2]$, however, because it is an increasing function on $[0, \pi / 2]$ giving distinct outputs for distinct inputs.

The graph of a one-to-one function $y=f(x)$ can intersect a given horizontal line at most once. If the function intersects the line more than once, it assumes the same y-value for at least two different x-values and is therefore not one-to-one

(a) One-to-one: Graph meets each horizontal line at most once.

(b) Not one-to-one: Graph meets one or more horizontal lines more than once.

How to Find the Inverse Function of a One-to-One Function f

STEP 1 Write $y=f(x)$.
STEP 2 Solve this equation for x in terms of y (if possible).
STEP 3 To express f^{-1} as a function of x, interchange x and y. The resulting equation is $y=f^{-1}(x)$.

Example 11:
Find the inverse function of $f(x)=x^{3}+2$.
SOLUTION According to (5) we first write

$$
y=x^{3}+2
$$

Then we solve this equation for x :

$$
\begin{aligned}
x^{3} & =y-2 \\
x & =\sqrt[3]{y-2}
\end{aligned}
$$

Finally, we interchange x and y :

$$
y=\sqrt[3]{x-2}
$$

Therefore the inverse function is $f^{-1}(x)=\sqrt[3]{x-2}$.

Example 12:

Sketch the graphs of $f(x)=\sqrt{-1-x}$ and its inverse function using the same coordinate axes.

SOLUTION First we sketch the curve $y=\sqrt{-1-x}$ (the top half of the parabola $y^{2}=-1-x$, or $x=-y^{2}-1$) and then we reflect about the line $y=x$ to get the graph of f^{-1}. (See Figure 10.) As a check on our graph, notice that the expression for f^{-1} is $f^{-1}(x)=-x^{2}-1, x \geqslant 0$. So the graph of f^{-1} is the right half of the parabola $y=-x^{2}-1$ and this seems reasonable from Figure

University of Anbar
College of Engineering
Dams \& Water Resources Eng. Dept.

Calculus I
Dr. Ahmed T. Noaman
Dr. Ghassan S. Jamil Phase: 1

Inverse Trigonometric Functions

The six basic trigonometric functions of a general radian angle x were reviewed in Chapter 2. These functions are not one-to-one (their values repeat periodically).

Domain restrictions that make the trigonometric functions one-to-one

$y=\sin x$
Domain: $[-\pi / 2, \pi / 2]$
Range: $[-1,1]$

$y=\cot x$
Domain: $(0, \pi)$
Range: $(-\infty, \infty)$

$y=\cos x$
Domain: $[0, \pi]$
Range: $[-1,1]$

$y=\sec x$
Domain: $[0, \pi / 2) \cup(\pi / 2, \pi]$
Range: $(-\infty,-1] \cup[1, \infty)$

$y=\tan x$
Domain: $(-\pi / 2, \pi / 2)$
Range: $(-\infty, \infty)$

$y=\csc x$
Domain: $[-\pi / 2,0) \cup(0, \pi / 2]$
Range: $(-\infty,-1] \cup[1, \infty)$

Since these restricted functions are now one-to-one, they have inverses, which we denote by

$$
\begin{array}{lll}
y=\sin ^{-1} x & \text { or } & y=\arcsin x \\
y=\cos ^{-1} x & \text { or } & y=\arccos x \\
y=\tan ^{-1} x & \text { or } & y=\arctan x \\
y=\cot ^{-1} x & \text { or } & y=\operatorname{arccot} x \\
y=\sec ^{-1} x & \text { or } & y=\operatorname{arcsec} x \\
y=\csc ^{-1} x & \text { or } & y=\operatorname{arccsc} x
\end{array}
$$

Graph of inverse trig functions

(a)

Domain: $x \leq-1$ or $x \geq 1$
Range: $0 \leq y \leq \pi, y \neq \frac{\pi}{2}$

(d)

Domain: $-1 \leq x \leq 1$
Range: $\quad 0 \leq y \leq \pi$

(b)

Domain: $x \leq-1$ or $x \geq 1$
Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, y \neq 0$

(e)

Domain: $-\infty<x<\infty$
Range: $-\frac{\pi}{2}<y<\frac{\pi}{2}$

(c)

Domain: $-\infty<x<\infty$
Range: $\quad 0<y<\pi$

(f)

University of Anbar
College of Engineering
Dams \& Water Resources Eng. Dept.

Calculus I
Dr. Ahmed T. Noaman
Dr. Ghassan S. Jamil
Phase: 1

Notes:

To convert from degree to radian

$$
\pi \text { radians }=180^{\circ}
$$

and
1 radian $=\frac{180}{\pi}(\approx 57.3)$ degrees \quad or $\quad 1$ degree $=\frac{\pi}{180}(\approx 0.017)$ radians.

TABLE 1.1 Angles measured in degrees and radians

Degrees	-180	-135	-90	-45	0	30	45	60	90	120	135	150	180	270	360

$\begin{array}{llllllllllllllllll}\theta \text { (radians) } & -\pi & \frac{-3 \pi}{4} & \frac{-\pi}{2} & \frac{-\pi}{4} & 0 & \frac{\pi}{6} & \frac{\pi}{4} & \frac{\pi}{3} & \frac{\pi}{2} & \frac{2 \pi}{3} & \frac{3 \pi}{4} & \frac{5 \pi}{6} & \pi & \frac{3 \pi}{2} & 2 \pi\end{array}$

TABLE 1.2 Values of $\sin \theta, \cos \theta$, and $\tan \theta$ for selected values of θ

| Degrees | $-\mathbf{1 8 0}$ | $-\mathbf{- 1 3 5}$ | $-\mathbf{- 9 0}$ | $-\mathbf{4 5}$ | $\mathbf{0}$ | $\mathbf{3 0}$ | $\mathbf{4 5}$ | $\mathbf{6 0}$ | $\mathbf{9 0}$ | $\mathbf{1 2 0}$ | $\mathbf{1 3 5}$ | $\mathbf{1 5 0}$ | $\mathbf{1 8 0}$ | 270 | $\mathbf{3 6 0}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{\theta}$ (radians) | $-\boldsymbol{\pi}$ | $\frac{-3 \pi}{4}$ | $\frac{-\pi}{2}$ | $\frac{-\pi}{4}$ | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\frac{2 \pi}{3}$ | $\frac{3 \pi}{4}$ | $\frac{5 \pi}{6}$ | $\boldsymbol{\pi}$ | $\frac{3 \pi}{2}$ | $2 \boldsymbol{\pi} \boldsymbol{\pi}$ |
| $\sin \theta$ | 0 | $\frac{-\sqrt{2}}{2}$ | -1 | $\frac{-\sqrt{2}}{2}$ | 0 | $\frac{1}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{3}}{2}$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | 0 | -1 | 0 |
| $\cos \theta$ | -1 | $\frac{-\sqrt{2}}{2}$ | 0 | $\frac{\sqrt{2}}{2}$ | 1 | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$ | $\frac{1}{2}$ | 0 | $-\frac{1}{2}$ | $\frac{-\sqrt{2}}{2}$ | $\frac{-\sqrt{3}}{2}$ | -1 | 0 | 1 |
| $\tan \theta$ | 0 | 1 | | -1 | 0 | $\frac{\sqrt{3}}{3}$ | 1 | $\sqrt{3}$ | | $-\sqrt{3}$ | -1 | $\frac{-\sqrt{3}}{3}$ | 0 | | 0 |

The "Arc" in Arcsine and Arccosine

For a unit circle and radian angles, the arc length equation $s=r \theta$ becomes $s=\theta$, so central angles and the arcs they subtend have the same measure. If $x=\sin y$, then, in addition to being the angle whose sine is x, y is also the length of arc on the unit circle that subtends an angle whose sine is x. So we call y "the arc whose sine is x."

Example 13:
Evaluate (a) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ and (b) $\cos ^{-1}\left(-\frac{1}{2}\right)$.

Solution

(a) We see that

$$
\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}
$$

because $\sin (\pi / 3)=\sqrt{3} / 2$ and $\pi / 3$ belongs to the range $[-\pi / 2, \pi / 2]$ of the arcsine function. See Figure 1.68a.
(b) We have

$$
\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3}
$$

because $\cos (2 \pi / 3)=-1 / 2$ and $2 \pi / 3$ belongs to the range [$0, \pi$] of the arccosine

We can create the following table of common values for the arcsine and arccosine functions

\boldsymbol{x}	$\sin ^{-1} \boldsymbol{x}$	$\cos ^{-1} \boldsymbol{x}$
$\sqrt{3} / 2$	$\pi / 3$	$\pi / 6$
$\sqrt{2} / 2$	$\pi / 4$	$\pi / 4$
$1 / 2$	$\pi / 6$	$\pi / 3$
$-1 / 2$	$-\pi / 6$	$2 \pi / 3$
$-\sqrt{2} / 2$	$-\pi / 4$	$3 \pi / 4$
$-\sqrt{3} / 2$	$-\pi / 3$	$5 \pi / 6$

(a)

(b)

Example 14:

Evaluate (a) $\sin ^{-1}\left(\frac{1}{2}\right)$ and (b) $\tan \left(\arcsin \frac{1}{3}\right)$.
SOLUTION
(a) We have

$$
\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

because $\sin (\pi / 6)=\frac{1}{2}$ and $\pi / 6$ lies between $-\pi / 2$ and $\pi / 2$.
(b) Let $\theta=\arcsin \frac{1}{3}$, $\operatorname{so} \sin \theta=\frac{1}{3}$. Then we can draw a right triangle with angle θ as in Figure and deduce from the Pythagorean Theorem that the third side has length $\sqrt{9-1}=2 \sqrt{2}$. This enables us to read from the triangle that

$$
\tan \left(\arcsin \frac{1}{3}\right)=\tan \theta=\frac{1}{2 \sqrt{2}}
$$

The cancellation equations for inverse functions become, in this case,

$$
\begin{array}{cl}
\sin ^{-1}(\sin x)=x & \text { for }-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2} \\
\sin \left(\sin ^{-1} x\right)=x & \text { for }-1 \leqslant x \leqslant 1
\end{array}
$$

The inverse sine function, $\sin ^{-1}$, has domain $[-1,1]$ and range $[-\pi / 2, \pi / 2]$, and its graph, shown in Figure 20, is obtained from that of the restricted sine function by reflection about the line $y=x$.

$$
y=\sin ^{-1} x=\arcsin x
$$

Example 15:

Simplify the expression $\cos \left(\tan ^{-1} x\right)$.
SOLUTION 1 Let $y=\tan ^{-1} x$. Then $\tan y=x$ and $-\pi / 2<y<\pi / 2$. We want to find $\cos y$ but, since $\tan y$ is known, it is easier to find $\sec y$ first:

$$
\begin{aligned}
& \sec ^{2} y=1+\tan ^{2} y=1+x^{2} \\
& \sec y=\sqrt{1+x^{2}} \quad(\text { since sec } y>0 \text { for }-\pi / 2<y<\pi / 2)
\end{aligned}
$$

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier to use a diagram. If $y=\tan ^{-1} x$, then $\tan y=x$, and we can read from Figure 24 (which illustrates the case $y>0$) that

$$
\cos \left(\tan ^{-1} x\right)=\cos y=\frac{1}{\sqrt{1+x^{2}}}
$$

The inverse tangent function, $\tan ^{-1}=\arctan$, has domain \mathbb{R} and range $(-\pi / 2, \pi / 2)$. Its graph is shown in Figure

$$
y=\cos ^{-1} x=\arccos x
$$

$$
y=\tan x,-\frac{\pi}{2}<x<\frac{\pi}{2}
$$

Identities of inverse trig functions

$\sin ^{-1} x+\cos ^{-1} x=\pi / 2$.
$\sin ^{-1} x$

$\cos ^{-1} \mathrm{x}$

and so on ..

