<u>Semester I (2019-2020)</u>

NATURAL LOGARITHMS

The logarithm with base is called the **natural logarithm** and has a special notation:

In particular, if we set x = 1, we get

$$\ln e = 1$$

Х	y= lnx
0	∞
1	0
2	0.693
3	1.098
4	1.386
5	1.609
-1	∞
0.9	-0.105
0.5	-0.693
0.2	-1.609
0.1	-2.302

Semester I (2019-2020)

EXAMPLE 7 Find x if $\ln x = 5$.

SOLUTION 1 From (8) we see that

 $\ln x = 5$ means $e^5 = x$

Therefore $x = e^5$.

(If you have trouble working with the "ln" notation, just replace it by \log_e . Then the equation becomes $\log_e x = 5$; so, by the definition of logarithm, $e^3 = x$.)

SOLUTION 2 Start with the equation

 $\ln x = 5$

and apply the exponential function to both sides of the equation:

$$e^{\ln x} = e^5$$

But the second cancellation equation in (9) says that $e^{\ln x} = x$. Therefore $x = e^5$.

EXAMPLE 8 Solve the equation $e^{5-3x} = 10$. SOLUTION We take natural logarithms of both sides of the equation and use (9): $\ln(e^{5-3x}) = \ln 10$

$$h(e^{5} = 1) = \ln 10$$

 $5 - 3x = \ln 10$
 $3x = 5 - \ln 10$
 $x = \frac{1}{3}(5 - \ln 10)$

Since the natural logarithm is found on scientific calculators, we can approximate the solution: to four decimal places, $x \approx 0.8991$.

2. Algebra of functions

Let f is a function of x then we get f(x) and g is a function of x also we get g(x)

Df is the domain of f(x)Dg is the domain of g(x)

Then:

 $\begin{array}{l} f+g=f(x)+g(x) \ \text{and} \ Df\cap Dg\\ f-g=f(x)-g(x)\\ f.g=f(x)\ .\ g(x) \end{array}$

Semester I (2019-2020)

and the domain is as same before

if f/g then Df \cap Dg but g(x) \neq 0 if g/f then Dg \cap Df but f(x) \neq 0

and $Df_og = \{x: x \in Dg, g(x) \in Df\}$ where

 $f_o g(x) = f(g(x))$ also called the composition of f and g

Example 8: Find fog and gof if $f_{(x)} = \sqrt{1-x}$ and $g_{(x)} = \sqrt{5+x}$

Solution

 $(f_0g)x = f(g(x)) = f(\sqrt{5+x}) = \sqrt{1-\sqrt{5+x}}$ (1-x) ≥ 0 then $x \le 1$ Df: $x \le 1$ 5+x ≥ 0 then $x \ge -5$ Dg: $x \ge -5$ D $f_0g = \{x: x \ge -5, \sqrt{5+x} \le 1\} = \{x: -5 \le x \le -4\}$

Example 11: Given F(x) = cos²(x + 9), find functions f, g, and h such that F = f ∘ g ∘ h.
Solution Since F(x) = [cos(x + 9)]², the formula for F says: First add 9, then take the cosine of the result, and finally square. So we let

h(x) = x + 9 $g(x) = \cos x$ $f(x) = x^2$

Then

$$(f \circ g \circ h)(x) = f(g(h(x))) = f(g(x+9)) = f(\cos(x+9))$$
$$= [\cos(x+9)]^2 = F(x)$$

Example 9: If $f_{(x)} = \sqrt{x}$ and $g_{(x)} = \sqrt{1-x}$ Find:

f+g, f-g, g-f, f_0g_1f/g_2 , g/f then graph f_0g_2 and also f+g.

Solution

 $f_{(x)} = \sqrt{x}$ domain $x \ge 0$

х

Semester I (2019-2020)

$$g_{(x)} = \sqrt{I-x} \text{ domain } x \le 1$$

$$f+g = (f+g)x = \sqrt{x} + \sqrt{I-x} \qquad \text{domain } 0 \le x \le 1 \text{ or } [0,1]$$

$$f-g = \sqrt{x} - \sqrt{I-x} \qquad \text{domain } 0 \le x \le 1$$

$$g-f = \sqrt{I-x} - \sqrt{x} \qquad \text{domain } 0 \le x \le 1$$

$$f_0g = f(x) g(x) = f(g(x)) = f(\sqrt{I-x}) = \sqrt{\sqrt{I-x}} = \sqrt[4]{I-x} \qquad \text{domain } (-\infty, 1] \text{ (why?)}$$

$$f/g = f(x)/g(x) = \sqrt{\frac{x}{I-x}} \qquad \text{domain } (-\infty, 1]$$

$$g/f = g(x)/f(x) = \sqrt{\frac{I-x}{x}} \qquad \text{domain } (0, 1]$$

-œ-g(x) -+-f+g ---f.g

-2

-3

-1

Inverse functions

A function that undoes, or inverts, the effect of a function f is called the inverse of f. Many common functions, though not all, are paired with an inverse. In this section we present the natural logarithmic function $y = \ln x$ as the inverse of the exponential function $y = e^x$, and we also give examples of several inverse trigonometric functions.

Semester I (2019-2020)

DEFINITION Suppose that f is a one-to-one function on a domain D with range R. The inverse function f^{-1} is defined by

 $f^{-1}(b) = a$ if f(a) = b.

The domain of f^{-1} is R and the range of f^{-1} is D.

Example 10:

Suppose a one-to-one function y = f(x) is given by a table of values

x	1	2	3	4	5	6	7	8
f(x)	3	4.5	7	10.5	15	20.5	27	34.5

A table for the values of $x = f^{-1}(y)$ can then be obtained by simply interchanging the values in the columns (or rows) of the table for f:

у	3	4.5	7	10.5	15	20.5	27	34.5
$f^{-1}(y)$	1	2	3	4	5	6	7	8

Note:

Only a one-to-one function can have an inverse

Q: What is the one to one function ?

DEFINITION A function f(x) is one-to-one on a domain D if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$ in D.

Note

domain of f^{-1} = range of frange of f^{-1} = domain of f

two functions have the same values on the smaller domain, so the original function is an extension of the restricted function from its smaller domain to the larger domain.

- (a) $f(x) = \sqrt{x}$ is one-to-one on any domain of nonnegative numbers because $\sqrt{x_1} \neq \sqrt{x_2}$ whenever $x_1 \neq x_2$.
- (b) g(x) = sin x is not one-to-one on the interval [0, π] because sin (π/6) = sin (5π/6). In fact, for each element x₁ in the subinterval [0, π/2) there is a corresponding element x₂ in the subinterval (π/2, π] satisfying sin x₁ = sin x₂, so distinct elements in the domain are assigned to the same value in the range. The sine function is one-to-one on [0, π/2], however, because it is an increasing function on [0, π/2] giving distinct outputs for distinct inputs.

The graph of a one-to-one function y = f(x) can intersect a given horizontal line at most once. If the function intersects the line more than once, it assumes the same y-value for at least two different x-values and is therefore not one-to-one

Semester I (2019-2020)

5 How to Find the Inverse Function of a One-to-One Function *f*

STEP 1 Write y = f(x).

STEP 2 Solve this equation for *x* in terms of *y* (if possible).

STEP 3 To express f^{-1} as a function of x, interchange x and y. The resulting equation is $y = f^{-1}(x)$.

Example 11:

Find the inverse function of $f(x) = x^3 + 2$.

SOLUTION According to (5) we first write

 $y = x^3 + 2$

Then we solve this equation for x:

 $x^3 = y - 2$ $x = \sqrt[3]{y - 2}$

Finally, we interchange x and y:

$$y = \sqrt[3]{x-2}$$

Therefore the inverse function is $f^{-1}(x) = \sqrt[3]{x-2}$.

Example 12:

Sketch the graphs of $f(x) = \sqrt{-1 - x}$ and its inverse function using the same coordinate axes.

SOLUTION First we sketch the curve $y = \sqrt{-1 - x}$ (the top half of the parabola $y^2 = -1 - x$, or $x = -y^2 - 1$) and then we reflect about the line y = x to get the graph of f^{-1} . (See Figure 10.) As a check on our graph, notice that the expression for f^{-1} is $f^{-1}(x) = -x^2 - 1$, $x \ge 0$. So the graph of f^{-1} is the right half of the parabola $y = -x^2 - 1$ and this seems reasonable from Figure

Semester I (2019-2020)

Inverse Trigonometric Functions

The six basic trigonometric functions of a general radian angle x were reviewed in Chapter 2. These functions are not one-to-one (their values repeat periodically).

Domain restrictions that make the trigonometric functions one-to-one

Semester I (2019-2020)

Since these restricted functions are now one-to-one, they have inverses, which we denote by

$y = \sin^{-1}x$	or	$y = \arcsin x$
$y = \cos^{-1}x$	or	$y = \arccos x$
$y = \tan^{-1} x$	or	$y = \arctan x$
$y = \cot^{-1} x$	or	$y = \operatorname{arccot} x$
$y = \sec^{-1} x$	or	$y = \operatorname{arcsec} x$
$y = \csc^{-1}x$	or	$y = \operatorname{arccsc} x$

Graph of inverse trig functions

<u>Semester I (2019-2020)</u>

Notes:

To convert from degree to radian

π radians = 180°

and

1 radian =
$$\frac{180}{\pi}$$
 (\approx 57.3) degrees or 1 degree = $\frac{\pi}{180}$ (\approx 0.017) radians

TABLE 1.1	Angles mea	asured in c	legrees a	nd radiar	ns										
Degrees	- 180	- 135	- 90	- 45	0	30	45	60	90	120	135	150	180	270	360
$\boldsymbol{\theta}$ (radians)	-π	$\frac{-3\pi}{4}$	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π

TABLE 1.2	Values of	sin θ, cos	θ , and	tan θ for	sele	ected va	lues of	θ							
Degrees	- 180			- 45			45	60	90	120	135	150	180		360
$\boldsymbol{\theta}$ (radians)	$-\pi$	$\frac{-3\pi}{4}$	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
sin θ	0	$\frac{-\sqrt{2}}{2}$	-1	$\frac{-\sqrt{2}}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\cos \theta$	-1	$\frac{-\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{3}}{2}$	-1	0	1
tan θ	0	1		-1	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$\frac{-\sqrt{3}}{3}$	0		0

Semester I (2019-2020)

The "Arc" in Arcsine and Arccosine For a unit circle and radian angles, the arc length equation $s = r\theta$ becomes $s = \theta$, so central angles and the arcs they subtend have the same measure. If $x = \sin y$, then, in addition to being the angle whose sine is x, y is also the length of arc on the unit circle that subtends an angle whose sine is x. So we call y "the arc whose sine is x."

Example 13:

Evaluate (a)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 and (b) $\cos^{-1}\left(-\frac{1}{2}\right)$.

Solution

(a) We see that

$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$$

because $\sin(\pi/3) = \sqrt{3}/2$ and $\pi/3$ belongs to the range $[-\pi/2, \pi/2]$ of the arcsine function. See Figure 1.68a.

(b) We have

$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

because $\cos(2\pi/3) = -1/2$ and $2\pi/3$ belongs to the range $[0, \pi]$ of the arccosine

Semester I (2019-2020)

We can create the following table of common values for the arcsine and arccosine functions

x	$\sin^{-1}x$	$\cos^{-1}x$
$\sqrt{3}/2$	$\pi/3$	$\pi/6$
$\sqrt{2}/2$	$\pi/4$	$\pi/4$
1/2	$\pi/6$	$\pi/3$
-1/2	$-\pi/6$	$2\pi/3$
$-\sqrt{2}/2$	$-\pi/4$	$3\pi/4$
$-\sqrt{3}/2$	$-\pi/3$	$5\pi/6$

Example 14:

Evaluate (a) $\sin^{-1}\left(\frac{1}{2}\right)$ and (b) $\tan\left(\arcsin\frac{1}{3}\right)$.

SOLUTION

(a) We have

$$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

because $\sin(\pi/6) = \frac{1}{2}$ and $\pi/6$ lies between $-\pi/2$ and $\pi/2$.

(b) Let $\theta = \arcsin \frac{1}{3}$, so $\sin \theta = \frac{1}{3}$. Then we can draw a right triangle with angle θ as in Figure and deduce from the Pythagorean Theorem that the third side has length $\sqrt{9-1} = 2\sqrt{2}$. This enables us to read from the triangle that

$$\tan\left(\arcsin\frac{1}{3}\right) = \tan\theta = \frac{1}{2\sqrt{2}}$$

Semester I (2019-2020)

The cancellation equations for inverse functions become, in this case,

$$\sin^{-1}(\sin x) = x \quad \text{for } -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
$$\sin(\sin^{-1}x) = x \quad \text{for } -1 \le x \le 1$$

The inverse sine function, \sin^{-1} , has domain [-1, 1] and range $[-\pi/2, \pi/2]$, and its graph, shown in Figure 20, is obtained from that of the restricted sine function by reflection about the line y = x.

 $y = \sin^{-1}x = \arcsin x$

Example 15:

Simplify the expression $\cos(\tan^{-1}x)$.

SOLUTION 1 Let $y = \tan^{-1}x$. Then $\tan y = x$ and $-\pi/2 < y < \pi/2$. We want to find $\cos y$ but, since $\tan y$ is known, it is easier to find sec y first:

 $\sec^2 y = 1 + \tan^2 y = 1 + x^2$ $\sec y = \sqrt{1 + x^2}$ (since $\sec y > 0$ for $-\pi/2 < y < \pi/2$)

Semester I (2019-2020)

SOLUTION 2 Instead of using trigonometric identities as in Solution 1, it is perhaps easier to use a diagram. If $y = \tan^{-1}x$, then $\tan y = x$, and we can read from Figure 24 (which illustrates the case y > 0) that

$$\cos(\tan^{-1}x) = \cos y = \frac{1}{\sqrt{1+x^2}}$$

The inverse tangent function, $\tan^{-1} = \arctan$, has domain \mathbb{R} and range $(-\pi/2, \pi/2)$. Its graph is shown in Figure .

Identities of inverse trig functions

Semester I (2019-2020)

$$\sin^{-1}x + \cos^{-1}x = \pi/2.$$

and so on ..