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            Limits & Continuity 

 

In this chapter, we’ll define how limit of function values are defined and 
calculated.  

 

Definition:  the limit of f(x) as x tends to a is defined as the value of f(x) as x 
approaches closer and closer to a without actually reaching it and denoted by: 

 

Lflim )x(
ax




      L is a single finite real number  

 

It’s important to know  

 

1. We don’t evaluate the limit by actually substituting x = a in f(x)  in 
general, although in some cases its possible.  

 

2. The value of the limit can depend on which side its approach  

 

3. The limit may not exist at all.  

 

 

Example 1: to explain the concept of limit, take the function f(x) = 2x – 4 if the  

 

241*2flim )x(
1x
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But the following table express many values of x can be expressed close to 1.  

 

 

 

Question: Why we take values approaches to 2 in example 1 instead we take 
x = 1 directly?  

 

Solution:  the answer about this question can be expressed in the following 
example:  

 

13f
2x

1

)x( 


 

If x = 0 then 1/0 = ∞ 

x 0.5  0.8 0.9 0.99 0.999 1.001 1.01 1.1 1.2 

f(x) -3 -2.4 -2.2 -2.02 -2.002 -1.998 -1.98 -1.8 -1.6 
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So..  

 

 

 

 

In limits we avoid ∞ 

 

 

 
 

 
THE TANGENT PROBLEM 

 

The word tangent is derived from the Latin word tangens, which means 

“touching.” Thus a tangent to a curve is a line that touches the curve. In other 

words, a tangent line should have the same direction as the curve at the point 

of contact. How can this idea be made precise? 

For a circle we could simply follow Euclid and say that a tangent is a line that 

intersects the circle once and only once as in Figure (a). For more 

complicated curves this definition is inadequate as shown in Figure (b) 

 

 

 

 

Example 2: Find an eq. of the tangent line to the parabola y = x2 at point 
(1,1)? 

x ±0.2  ±0.5 etc.. 

 f(x) 1.00000 1.012345679 
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Solution  
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THE VELOCITY PROBLEM 

If you watch the speedometer of a car as you travel in city traffic, you see that 

the needle doesn’t stay still for very long; that is, the velocity of the car is not 

constant. We assume from watching the speedometer that the car has a 

definite velocity at each moment, but how is the “instantaneous” velocity 

defined? Let’s investigate the example of a falling ball. 
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Example 3: Discuss the function  
3x

9x
f

2

)x(



    

If  (1)  x = 1, x = 2 

    (2)  x = 3  

    (3)  x     1, x     2 

    (4)  x     3  
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Solution:  

 

3x
)3x(

)3x)(3x(

3x

9x
f

2

)x( 








   and x ≠ 3    

Its equivalent to g(x) = x+3   and  x ≠ 3,  then:  

f(1) = g(1) = 4     

f(2) = g(2) = 5     

if   x     1 then f(x) = 4      and 4flim )x(
1x




 

if x = 3  then f(3) = 0/0 = ∞   

if x       3  then    6flim )x(
3x




 

 

note: if f(x) is defined by two different forms before and after x = a then we 

must discuss the left limit and the right limit.  

 

Properties of limits:  

If     bflim )x(
ax




    cflim )x(
ax


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Then:  

  

1. kbfklim )x(
ax




   for any constant k  

2. cbglimflim]gf[lim )x(
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)x(
ax

)x()x(
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
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4.  
0cifc/bglim/flim]g/f[lim )x(
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)x(
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)x()x(

ax


  

5. 
nforonlyvaluesrealb]f[lim n/1n/1

)x(
ax


      

 

The limit must exist before applying the above results.  
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Example 3: find the limits of the following functions:  

1. 
3x
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2
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
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2. 
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3.  
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Note:   
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Example 4: find  

3x2x)1x(
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2
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Solution:  

 

6

2
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Theorem I     If g(x) ≤ f(x) ≤ h(x) and     
Lhlimglim )x(

ax
)x(
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  

Theorem II    
1
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Example 5:    

1. 7/5
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x5.
x5

x5sin

x7sin

x5sin
lim 

0x



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