

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic I

Second Class

Chapter 3 : BJT Transistors Lec03_p2 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common–Emitter Configuration

•The emitter is common to both input (base-emitter) and output (collectoremitter).

•The input is on the base and the output is on the collector.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common-Emitter Amplifier Currents where I_{CBO} = minority collector current $I_C = \alpha I_E + I_{CBO}$ I_{CBO} is usually so small that it can be ignored, except in high power transistors and in high temperature environments. Since $I_E = I_C + I_B$, $I_C = \alpha (I_C + I_B) + I_{CBO}$ $I_{C} = \frac{\alpha I_{B}}{1 - \alpha} + \frac{I_{CBO}}{1 - \alpha}$ $B \circ I_B = 0$ For $I_{\rm B}=0$, and take $\alpha = 0.996$, Base open Collector to emitter F $I_{C} = \frac{\alpha(0 \text{ A})}{1 - \alpha} + \frac{I_{CBO}}{1 - 0.996} = \frac{I_{CBO}}{1 - 0.996} = \frac{I_{CBO}}{0.004} = 250I_{CBO}$ If I_{CBO} were 1 μ A, the resulting collector current with $I_{B}=0$ A would be $250(1 \ \mu A) = 0.25 \ mA$, as reflected in the characterestics.

When $I_B = 0 \mu A$ the transistor is in cutoff, but there is some minority current flowing called I_{CEO} , I_{CBO}

$$I_{CEO} = \frac{I_{CBO}}{1-\alpha} \Big|_{I_B = 0 \,\mu A}$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Beta (b)

 β represents the amplification factor of a transistor. (β is sometimes referred to as h_{fe} , a term used in transistor modeling calculations)

In DC mode:

$$\boldsymbol{\beta}_{\rm dc} = \frac{\boldsymbol{I}_C}{\boldsymbol{I}_B}$$

For practical devices β is typically 50 to over 400.

In AC mode:

$$\beta_{\rm ac} = \frac{\Delta Ic}{\Delta IB} \Big|_{V_{\rm CE} = \rm constant}$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

 β_{ac} and β_{dc} are usually reasonably close and are often used interchangeably.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Beta (β) Relationship between amplification factors β and α :-

using
$$\beta = \frac{I_C}{I_B}$$
, $\alpha = \frac{I_C}{I_E}$
and $I_E = I_C + I_B$
 $\frac{I_C}{\alpha} = I_C + \frac{I}{\beta} \rightarrow \frac{1}{\alpha} = 1 + \frac{1}{\beta}$
 $\beta = \alpha\beta + \alpha = (\beta + 1)\alpha$
 $\alpha = \frac{\beta}{\beta + 1}$
 $\beta = \frac{\alpha}{\alpha - 1}$

Relationship Between Currents

$$\mathbf{I}_{\mathbf{C}} = \boldsymbol{\beta} \mathbf{I}_{\mathbf{B}} \quad , \ I_{E} = I_{C} + I_{B} = \boldsymbol{\beta} I_{B} + I_{B} \quad , \ \mathbf{I}_{\mathbf{E}} = (\boldsymbol{\beta} + \mathbf{1}) \mathbf{I}_{\mathbf{B}}$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Determining the proper biasing arrangement for a common-emitter *npn* transistor configuration.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common–Collector Configuration The input is on the base and the output is on the emitter. I_E pn I_B B V_{EE} p n V_{EE} B B n D V_{BB} V_{BB} + I_C $\circ E$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common–Collector Configuration

The characteristics are similar to those of the common-emitter configuration, except the vertical axis is I_E .

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumental of Electronic I Msc: Munther Naif Thiyab

Various types of general-purpose or switching transistors: (a) low power; (b) medium power; (c) medium to high power.