

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic I

Second Class

Chapter 4 : DC Biasing – BJTs Lec04_p1 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Biasing

Biasing: The DC voltages applied to a transistor in order to turn it on so that it can amplify the AC signal.

Recall the following basic relationships for a transistor:

 $V_{BE} = 0.7 V$ $I_{E} (\beta + 1)I_{\beta}$ $I_{C} = \beta I_{\beta}$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Operating Point

The DC input establishes an operating or *quiescent point* called the *Q-point*.

Fundumental of Electronic I Msc: Munther Naif Thiyab

The Three States of Operation

- Active or Linear Region Operation Base–Emitter junction is forward biased Base–Collector junction is reverse biased
- Cutoff Region Operation Base–Emitter junction is reverse biased
- Saturation Region Operation

Base–Emitter junction is forward biased Base–Collector junction is forward biased

Fundumental of Electronic I Msc: Munther Naif Thiyab

DC Biasing Circuits

- Fixed-bias circuit
- Emitter-stabilized bias circuit
- Collector-emitter loop
- Voltage divider bias circuit
- DC bias with voltage feedback

Fundumental of Electronic I Msc: Munther Naif Thiyab

5

Fundumental of Electronic I Msc: Munther Naif Thiyab

Load Line Analysis I_C (mA) 50 µA 8 40 µA 6 30 µA 5 • V_{CC} 4 20 µA I_C 3 R_C R_B 10 µA 2 $I_B = 0 \ \mu A$ V_{CE} I_B V_{CE} (V) 5 10 15 0 I_{CEO} $V_{CE} = V_{CC} - I_C R_C$

10

Fundumental of Electronic I Msc: Munther Naif Thiyab

Emitter-Stabilized Bias Circuit

Adding a resistor (R_E) to the emitter circuit stabilizes the bias circuit.

16

Fundumental of Electronic I Msc: Munther Naif Thiyab

Improved Biased Stability

Stability refers to a circuit condition in which the currents and voltages will remain fairly constant over a wide range of temperatures and transistor Beta (β) values.

Adding R_E to the emitter improves the stability of a transistor.

