

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic I

Second Class

Chapter 4 : DC Biasing – BJTs Lec04_p2 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Voltage Divider Bias

Fundumental of Electronic I Msc: Munther Naif Thiyab

Voltage Divider Bias Analysis V_{CC} V_{CC} R_C R_1 B R_1 + V_{CC} R_2 R_E R_2 R_E Thévenin Redrawing the input side of the network. **DC** Circuit

Fundumental of Electronic I Msc: Munther Naif Thiyab

4

Voltage Divider Bias Analysis $R_{\rm Th}$ B I_B V_{BE} $E_{\rm Th}$ $E_{th} - I_{R}R_{TH} - V_{RE} - I_{E}R_{E} = 0$ R_E . I_{F} (β +1) _R Inserting the Thévenin equivalent circuit. $=\frac{E_{th}-BE}{R_{TH}}(\beta+1)R_{E}$ V_{CC} V_{CC} I_{B} R_C R_1 $V_{CE} = V_{CC} - I_C (R_C + R_E)$ R_2 R_E

Fundumental of Electronic I Msc: Munther Naif Thiyab

Collector Feedback Configuration

Another way to improve the stability of a bias circuit is to add a feedback path from collector to base.

>In this bias circuit the Q-point is only slightly dependent on the transistor beta, β .

Fundumental of Electronic I Msc: Munther Naif Thiyab

Base-Emitter Loop

V_{CC}

From Kirchhoff's voltage law:

$$\mathbf{V}_{\mathbf{C}\mathbf{C}} - \mathbf{I}_{\mathbf{C}}'\mathbf{R}_{\mathbf{C}} - \mathbf{I}_{\mathbf{B}}\mathbf{R}_{\mathbf{B}} - \mathbf{V}_{\mathbf{B}\mathbf{E}} - \mathbf{I}_{\mathbf{E}}\mathbf{R}_{\mathbf{E}} = \mathbf{0}$$

Since $I_B \ll I_C$:

$$\mathbf{I'}_{\mathbf{C}} = \mathbf{I}_{\mathbf{C}} + \mathbf{I}_{\mathbf{B}} \cong \mathbf{I}_{\mathbf{C}}$$

Knowing $I_C = \beta I_B$ and $I_E \cong I_C$, the loop equation becomes:

$$\mathbf{V}_{\mathbf{C}\mathbf{C}} - \beta \mathbf{I}_{\mathbf{B}}\mathbf{R}_{\mathbf{C}} - \mathbf{I}_{\mathbf{B}}\mathbf{R}_{\mathbf{B}} - \mathbf{V}_{\mathbf{B}\mathbf{E}} - \beta \mathbf{I}_{\mathbf{B}}\mathbf{R}_{\mathbf{E}} = \mathbf{0}$$

Solving for I_B:

$$\mathbf{I}_{\mathbf{B}} = \frac{\mathbf{V}_{\mathbf{C}\mathbf{C}} - \mathbf{V}_{\mathbf{B}\mathbf{E}}}{\mathbf{R}_{\mathbf{B}} + \beta(\mathbf{R}_{\mathbf{C}} + \mathbf{R}_{\mathbf{E}})} \qquad \mathbf{I}_{C} = \beta \mathbf{I}$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

 V_{CC}

Collector-Emitter Loop

Applying Kirchoff's voltage law: I'_C $\mathbf{I}_{\mathbf{E}} \mathbf{R}_{\mathbf{E}} + \mathbf{V}_{\mathbf{C}\mathbf{E}} + \mathbf{I'}_{\mathbf{C}} \mathbf{R}_{\mathbf{C}} - \mathbf{V}_{\mathbf{C}\mathbf{C}} = \mathbf{0}$ Since $I'_C \cong I_C$ and $I_E \cong I_C$: I_C $I_{C}(R_{C} + R_{E}) + V_{CE} - V_{CC} = 0$ V_{CE} Solving for V_{CE}: $\mathbf{V}_{\mathbf{CE}} = \mathbf{V}_{\mathbf{CC}} - \mathbf{I}_{\mathbf{C}} (\mathbf{R}_{\mathbf{C}} + \mathbf{R}_{\mathbf{E}})$

9

