Potential Energy

Additional examples

P. 3/160: The small bodies A and B each of mass m are connected and supported by the pivoted links of negligible mass. If A is released from rest in the position shown, calculate its velocity v_{A} as it crosses the vertical centerline. Neglect any friction.

Problem 3/160

P. 3/171: A $175-\mathrm{lb}$ pole vaulter carrying a uniform 16 - ft , $10-\mathrm{lb}$ pole approaches the jump with a velocity v and manages to barely clear the bar set at a height of 18 ft . As he clears the bar, his velocity and that of the pole are essentially zero.

Calculate the minimum possible value of v required for him to make the jump. Both the horizontal pole and the center of gravity of the vaulter are 42 in . above the ground during the approach

$$
\begin{array}{l|l}
\hline 3 / 171 & U_{1-2}^{\prime}=0 \text { so } T_{1}+V_{91}=T_{2}+V_{g_{2}}
\end{array}
$$

Take datum $V_{g}=0$ at ground level.

$$
\begin{aligned}
& T_{1}=\frac{1}{2} \frac{175+10}{32.2} v^{2}=2.87 v^{2}, T_{2}=0 \\
& V_{g_{1}}=(175+10) \frac{42}{12}=648 \mathrm{ft}-1 \mathrm{bb} \\
& V_{g_{2}}=175(18)+10(8)=3230 \mathrm{ft}-\mathrm{lb} \\
& \text { So } 2.87 v^{2}+648=0+3230 \\
& v=30.0 \mathrm{ft} / \mathrm{sec} \text { or } 20.4 \mathrm{mi} / \mathrm{hr}
\end{aligned}
$$

