

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter05: BJT AC Analysis Lec05_p1 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

BJT Transistor Modeling

- A model is an equivalent circuit that represents the AC characteristics of the transistor.
- A model uses circuit elements that approximate the behavior of the transistor.
- There are two models commonly used in small signal AC analysis of a transistor:
 - r_e model
 - Hybrid equivalent model

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common-Base Configuration

Fundumental of Electronic I University of Anbar Msc: Munther Naif Thiyab College of Engineering Dept. of Electrical Engineering **Common-Base** $\downarrow I_C$ (mA) Slope = $\frac{1}{r_o}$ $I_E = 4 \text{ mA}$ 4 Configuration $I_F = 3 \text{ mA}$ $I_o = -I_c$ 3 $I_E = 2 \text{ mA}$ 2 -00 Z_o $I_F = 1 \text{ mA}$ $I_c = \alpha I_e$ Vo $I_E = 0 \text{ mA}$ $\overline{o} B$ Bo $\sim V_{CB}$ 0 $I_o = -I_c$ The output resistance r_0 is quite high. typically extend into $\overline{Z_i}$ $\overline{Z_o}$ the megaohm range. $I_c = \alpha I_e$ r_o V_o V_i r_e Common Base r_e equivalent circuit 8 $B \circ$ -0R

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common Emitter Fixed Bias Configuration

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common Emitter Fixed Bias Configuration

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common Emitter Fixed Bias Configuration

Input impedance: I_i I_b $Z_i = R_B || \beta r_e$ $i \neq J_i$ $i \neq J_b$ $Z_i \cong \beta r_e | R_E \ge 10\beta r_e$ V_i R_B Output impedance: $I \neq J_b$ $I \neq J_b$ $Z_0 = R_C || r_0$ $I = R_C || r_0$ $I = R_C || r_0$ $Z_0 \cong R_C || r_0 \ge 10R_C$ Voltage

Voltage gain:

$$\mathbf{V}_{\mathrm{o}} = -\beta I_{b} (\mathbf{R}_{\mathrm{C}} || \mathbf{r}_{\mathrm{o}}) , \ I_{b} = \frac{V_{i}}{\beta \mathbf{r}_{\mathrm{e}}} , \ \mathbf{V}_{\mathrm{o}} = -\beta \left(\frac{V_{\mathrm{i}}}{\beta \mathbf{r}_{\mathrm{e}}}\right) (\mathbf{R}_{\mathrm{C}} || \mathbf{r}_{\mathrm{o}})$$

 βr_e

 $\beta I_b \gtrsim r_o$

 R_C

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{(R_{C} || r_{o})}{r_{e}} , A_{v} = -\frac{R_{C}}{r_{e}} |_{r_{o} \ge 10R}$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

Common Emitter Fixed Bias Configuration

Demonstrating the 180° phase shift between input and output waveforms.

