Fundumantal of Elcctanitul

Second Class

Chapter05: BJT AC Analysis
Lec05_p2
Munther N. Thiyab

2019-2020

Common-Emitter Voltage-Divider Bias

r_{e} model requires you to determine β, r_{e}, and r_{0}.

Common-Emitter Voltage-Divider Bias

Input impedance:

$$
\begin{aligned}
& \mathbf{R}^{\prime}=\mathbf{R}_{\mathbf{1}} \| \mathbf{R}_{\mathbf{2}} \\
& \mathbf{Z}_{\mathbf{i}}=\mathbf{R}^{\prime} \| \beta \mathbf{r}_{\mathbf{e}}
\end{aligned}
$$

Output impedance:

$$
\begin{aligned}
& \mathbf{Z}_{\mathbf{0}}=\mathbf{R}_{\mathbf{C}} \| \mathbf{r}_{\mathbf{0}} \\
& \mathbf{Z}_{\mathbf{0}} \cong \mathbf{R}_{\mathbf{C}} \mid \mathbf{r}_{\mathbf{0}} \geq 10 \mathbf{R}_{\mathbf{C}}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o}}=-I_{b}\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{r}_{\mathrm{o}}\right), I=\frac{V_{i}}{\mathrm{r}_{\mathrm{e}}}, \mathrm{~V}_{\mathrm{o}}=-\beta\left(\frac{V_{\mathrm{i}}}{\beta \mathrm{r}_{\mathrm{e}}}\right)\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{r}_{\mathrm{o}}\right) \\
& \mathrm{A}_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{i}}}=-\frac{\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{r}_{\mathrm{o}}\right)}{\mathrm{r}_{\mathrm{e}}} \quad, \quad \mathrm{~A}_{\mathrm{v}}=-\left.\frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{r}_{\mathrm{e}}}\right|_{\mathrm{r}_{\mathrm{o}} \geq 10 \mathrm{R}}
\end{aligned}
$$

Example 5.2

Determine $\mathrm{r}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}$ (with $\mathrm{r}_{\mathrm{o}}=\infty$), A_{v} (with $\left.r_{0}=\infty\right)$. Repeat with $r_{0}=50 \mathrm{k} \Omega$.

Example 5.2 - Solution

Common-Emitter Emitter-Bias Configuration

Impedance Calculations

Input impedance:

$V_{i}=I_{b} \beta r_{e}+I_{e} R_{E}$
$V_{i}=I_{b} \beta r_{e}+(\beta+1) I_{b} R_{E}$
$Z_{b}=\frac{V_{i}}{I_{b}}=\beta r_{e}+(\beta+1) R_{E}$
$Z_{b} \cong \beta r_{e}+\beta R_{E}=\beta\left(r_{e}+R_{E}\right)$
$Z_{b} \cong \beta R_{E} \quad$ for $\mathrm{R}_{\mathrm{E}} \gg r_{e}$

Output impedance:

$\mathrm{Z}_{\mathrm{i}}=\mathrm{R}_{\mathrm{B}} \| \mathrm{Z}_{\mathrm{b}}$

$$
\mathrm{Z}_{\mathrm{o}}=\mathrm{R}
$$

Gain Calculations

Voltage gain:
$\mathrm{V}_{\mathrm{o}}=-I_{o} R_{C}=-\beta I_{b} R_{C}$
$\mathrm{V}_{\mathrm{o}}=-\beta\left(\frac{V_{i}}{Z_{b}}\right) R_{C}$
$\mathrm{A}_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{i}}}=-\frac{\beta \mathrm{R}_{\mathrm{C}}}{\mathrm{Z}_{\mathrm{b}}}$

substituting $\mathrm{Z}_{\mathrm{b}} \cong \beta\left(\mathrm{r}_{\mathrm{e}}+\mathrm{R}_{\mathrm{E}}\right)$
$A_{v}=\frac{V_{o}}{V_{i}}=-\frac{R_{C}}{r_{e}+R_{E}}$
and for the approximation $\mathrm{Z}_{\mathrm{b}} \cong \beta \mathrm{R}$
$A_{v}=\frac{V_{o}}{V_{i}} \cong-\frac{R}{R_{E}}$

Example 5.3 without C_{E} (unbypassed):
Determine $\mathrm{r}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}, \mathrm{A}_{\mathrm{v}}$. ignore r_{o} for $\mathrm{r}_{\mathrm{o}} \geq 10\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{E}}\right)$

