# Fundumantal of Ecctranicll 

## Second Class

Chapter05: BJT AC Analysis Lec05_p3<br>Munther N. Thiyab

2019-2020

## Emitter-Follower Configuration



- This is also known as the common-collector configuration.
- The input is applied to the base and the output is taken from the emitter.
- There is no phase shift between input and output.


## Impedance Calculations

## Input impedance:

$\mathrm{Z}_{\mathrm{i}}=\mathrm{R}_{\mathrm{B}} \| \mathrm{Z}_{\mathrm{b}}$
$\mathrm{Z}_{\mathrm{b}}=\beta \mathrm{r}_{\mathrm{e}}+(+1) \mathrm{R}_{\mathrm{E}}$
$\mathrm{Z}_{\mathrm{b}} \cong \beta\left(\mathrm{r}_{\mathrm{e}} \quad \mathrm{R}_{\mathrm{E}}\right)$
$\mathrm{Z}_{\mathrm{b}} \cong \beta \mathrm{R}_{\mathrm{E}} \quad\left(\right.$ for $\left.\mathrm{R}_{\mathrm{E}} \gg \mathrm{r}_{\mathrm{e}}\right)$


## Impedance Calculations

Output impedance:

$$
\begin{aligned}
\begin{aligned}
& I_{b}=\frac{V_{i}}{Z_{b}}, \mathrm{I}_{\mathrm{e}}=(\beta+1) \mathrm{I}_{\mathrm{b}} \\
&=(\beta+1) \frac{V_{i}}{Z_{b}} \\
& I_{e}=\frac{(\beta+1) V_{i}}{\beta r_{e}+(\beta+1) R_{E}} \\
& \sin c e(\beta+1) \cong \beta \\
& I_{e}=\frac{V_{i}}{r_{e}+R}
\end{aligned}
\end{aligned}
$$



To determine $\mathrm{Z}_{\mathrm{o}}, V_{i}$ is set to zero
$Z_{o}=R_{E} \| r_{e},\left.\quad Z_{o} \quad r_{e}\right|_{R_{\mathrm{f}} \gg \mathrm{r}}$


## Gain Calculations

Voltage gain:
$\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{R}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{E}}+\mathrm{r}_{\mathrm{e}}} \mathrm{V}_{i}$
$A_{v}=\frac{V_{o}}{V_{i}}=\frac{R_{E}}{R_{E}+r_{e}}$
$\left.A_{v} \quad \frac{V_{o}}{V_{i}} \cong 1\right|_{R_{E}>r_{c}, R_{E}+r_{c}=R_{E}}$


## Example 5.7 Determine $\mathrm{r}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}$, $\mathrm{A}_{\mathrm{v}}$.



## Example 5.7 - solution



