Fundumantal of Elcctanitul

Second Class

Chapter05: BJT AC Analysis
Lec05_p4
Munther N. Thiyab

2019-2020

Common-Base Configuration

- The input is applied to the emitter.
- The output is taken from the collector.
- Low input impedance.
- High output impedance.
- Very high voltage gain.

- No phase shift between input and output.

Calculations

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{E}} \| \mathbf{r}_{\mathbf{e}}
$$

Output impedance:

$$
\mathbf{Z}_{\mathbf{o}}=\mathbf{R}_{\mathbf{C}}
$$

Voltage gain:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{o}} & =-I_{o} R_{C}=-\left(-I_{C}\right) R_{C} \\
& =\alpha I_{e} R_{C}
\end{aligned}
$$

$$
I_{e}=\frac{V_{i}}{e} \rightarrow \mathrm{~V}_{\mathrm{o}}=\alpha\left(\frac{V_{i}}{r_{e}} R_{C}\right.
$$

$$
\mathrm{A}_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{i}}}=\frac{\alpha \mathrm{R}_{\mathrm{C}}}{\mathrm{r}_{\mathrm{e}}} \cong \frac{\mathrm{R}_{\mathrm{C}}}{\mathrm{r}_{\mathrm{e}}}
$$

Current gain:

Assuming $R_{E} \gg r_{e}$
$I_{e}=I_{i}$
$I_{o}=-I_{e}=-\alpha I_{i}$
$\mathrm{A}_{\mathrm{i}}=\frac{\mathrm{I}_{\mathrm{o}}}{\mathrm{I}}=-\alpha \cong-$
A_{v} positive... v_{i} and V_{o} in phiase.

Example 5.8

Determine $\mathrm{r}_{\mathrm{e}}, \mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{o}}, \mathrm{A}_{\mathrm{v}}, \mathrm{A}_{\mathrm{i}}$

Common-Emitter Collector Feedback Configuration

- This is a variation of the common-emitter fixed-bias configuration
- Input is applied to the base
- Output is taken from the collector
- There is a 180° phase shift between input and output

Calculations

Output impedance:

$$
\mathrm{Z}_{\mathrm{o}} \cong \mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{F}}
$$

Voltage gain:

$I_{o}=\beta I_{b}+I^{\prime}$
For $\beta I_{b}>I^{\prime} \rightarrow I_{o} \cong \beta I_{b}$
$V_{o}=-I_{o} R_{C}=-\left(\beta I_{b}\right) R_{C}$
$I_{b}=\frac{V_{i}}{\beta r_{e}} \rightarrow V_{o}=-\beta \frac{V}{\beta r_{e}} R_{C}$
$A_{v}=\frac{V_{o}}{V_{i}}=-\frac{R}{r_{e}}$

Calculations Input impedance:

$Z_{i}=\frac{V_{i}}{I_{i}}, \quad V_{o}=-\frac{V_{i}}{r_{e}} R_{C}$
$I^{\prime}=\frac{V_{o}-V_{i}}{R_{F}}=\frac{V_{o}}{R_{F}}-\frac{V_{i}}{R_{F}}=-\frac{R_{C} V_{i}}{r_{e} R_{F}}-\frac{V_{i}}{R_{F}}=-\frac{1}{R_{F}}\left[1+\frac{R_{C}}{r_{e}}\right] V_{i}$
$V_{i}=I_{b} \beta r_{e}=\left(I_{i}+I^{\prime}\right) \beta r_{e}=I_{i} \beta r_{e}+I^{\prime} \beta r_{e}$
$V_{i}=I_{i} \beta r_{e}-\frac{1}{R_{F}}\left[1+\frac{R_{C}}{r_{e}}\right] \beta r_{e} V_{i}$
or $\mathrm{V}_{\mathrm{i}}\left[1+\frac{\beta r_{e}}{R_{F}}\left[1+\frac{R_{C}}{r_{e}}\right]\right]=I_{i} \beta r_{e}$
$Z_{i}=\frac{V_{i}}{I_{i}}=\frac{\beta r_{e}}{1+\frac{\beta r_{e}}{R_{F}}\left[1+\frac{R_{C}}{r_{e}}\right]}$

$1+\frac{R_{C}}{r_{e}} \cong \frac{R_{C}}{r_{e}} \rightarrow Z_{i}=\frac{\beta r_{e}}{1+\frac{\beta R_{C}}{R^{\prime}}}$
$>Z_{i}=\frac{\mathbf{r}_{\mathbf{e}}}{\frac{1}{\beta}+\frac{\mathbf{R}_{\mathbf{C}}}{\mathbf{R}_{\mathbf{F}}}}$

Determining the current gain using the voltage gain

Current Gain $\mathrm{A}_{i}=\frac{I_{o}}{I_{i}} \quad, \quad I_{i}=\frac{V_{i}}{Z_{i}} \quad, \quad I_{o}=-\frac{V_{o}}{R_{L}}$

$$
A_{i_{L}}=\frac{I_{o}}{I_{i}}=\frac{-\frac{V_{o}}{R_{L}}}{\frac{V_{i}}{Z_{i}}}=-\frac{V_{o}}{V_{i}} \cdot \frac{Z_{i}}{R_{L}}
$$

$$
\mathrm{A}_{\mathrm{i}}=-\mathrm{A}_{v_{\mathrm{L}}} \frac{Z_{i}}{R_{L}}
$$

Determining the current gain using the voltage gain

From example 5.2
$\mathrm{Z}_{\mathrm{i}}=1.35 \mathrm{k} \Omega$.
$\mathrm{A}_{\mathrm{v}}=-368.76$
Current Gain $\mathrm{A}_{i}=\frac{I_{o}}{I_{i}}$,
$I_{i}=\frac{V_{i}}{1.35 k} \quad, \quad I_{o}=-\frac{V_{o}}{6.8 k}$
$\begin{aligned} A_{i_{L}} & =\frac{I_{o}}{I_{i}}=\frac{-\frac{V_{o}}{6.8 k}}{\frac{V_{i}}{1.35 k}}=-\frac{V_{o}}{V_{i}} \cdot \frac{1.35 k}{6.8 k} \\ & =-(-368.76) \frac{1.35 k}{6.8 k}=73.2\end{aligned}$

or $\mathrm{A}_{\mathrm{i}}=-\mathrm{A}_{v_{\mathrm{L}}} \frac{Z_{i}}{R_{L}}=-(-368.76) \frac{1.35 k}{6.8 k}=73.2$

