

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter 6 : Field Effect Transistors Lec06_p2 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

JFET Symbols

12

Fundumental of Electronic I University of Anbar Msc: Munther Naif Thiyab College of Engineering Dept. of Electrical Engineering D $V_{GS} = -V_{GG}$ $= V_{DD} \ge |V_P|$ $I_D = I_{DSS}$ $I_D = 0 \text{ A}$ V_{DD} $V_{GS} = 0 \text{ V}$ VGG VGS \$ S $|V_{GG}| \ge |V_P|$ (a) (b) $|V_P| \ge |V_{GG}| \ge 0 \text{ V}$ $0 \text{ mA} \le I_D < I_{DSS}$ V_{GG} VGS 05

(a) $V_{GS} = 0$ V, $I_D = I_{DSS}$; (b) cutoff ($I_D = 0$ A) V_{GS} less than (more negative than) the pinch-off level; (c) I_D is between 0 A and I_{DSS} for $V_{GS} \le 0$ V and greater than the pinch-off level.

(c)

Fundumental of Electronic I Msc: Munther Naif Thiyab

JFET Transfer Characteristics

In a BJT, β indicates the relationship between I_B (input) and I_C (output).

In a JFET, the relationship of V_{GS} (input) and I_D (output) is a little more complicated (*Shockley's equation*):

$$\mathbf{I_D} = \mathbf{I_{DSS}} \left(1 - \frac{\mathbf{V_{GS}}}{\mathbf{V_P}} \right)^2$$

William Bradford Shockley (1910–1989)

Fundumental of Electronic I Msc: Munther Naif Thiyab

JFET Transfer Curve

This graph shows the value of I_D for a given value of V_{GS} .

15

Fundumental of Electronic I Msc: Munther Naif Thiyab

16

Plotting the JFET Transfer Curve

Using I_{DSS} and Vp ($V_{GS(off)}$) values found in a specification sheet, the transfer curve can be plotted according to these three steps:

Fundumental of Electronic I Msc: Munther Naif Thiyab

Example 6.1

Sketch the transfer curve defined by I_{DSS} =12 mA and V_P =-6V.

17