

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter 6 : Field Effect Transistors Lec06_p3 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

MOSFETs

MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful.

There are two types of MOSFETs:

- Depletion-Type
- Enhancement-Type

Fundumental of Electronic I Msc: Munther Naif Thiyab

Depletion-Type MOSFET Construction

The Drain (D) and Source (S) connect to the to *n*-doped regions.

These *n*-doped regions are connected via an *n*-channel.

This *n*-channel is connected to the Gate (G) via a thin insulating layer of SiO_2 .

The *n*-doped material lies on a p-doped substrate that may have an additional terminal connection called Substrate (SS).

(Drain) SiO2 *n*-channel n Metal contacts (Gate) Substrate SS G Substrate n n-doped regions (Source)

n-Channel depletion-type MOSFET.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Depletion-Type MOSFET : Basic Operation and Characteristics

 $>V_{GS}=0$ and V_{DS} is applied across the drain to source terminals.

>This results to attraction of free electrons of the n-channel to the drain, and hence current flows.

n-Channel depletion-type MOSFET with $V_{GS} = 0$ V and applied voltage V_{DD} .

Fundumental of Electronic I Msc: Munther Naif Thiyab

Depletion-Type MOSFET : Basic Operation and Characteristics

 $>V_{GS}$ is set at a negative voltage such as -1 V.

➤The negative potential at the gate pressures electrons toward the p-type substrate and attract holes from the ptype substrate.

This will reduce the number of free electrons in the *n*-channel available for conduction.

The more negative the V_{GS} , the resulting level of drain current I_D is reduced.

When V_{GS} is reduced to V_P (Pinchoff voltage), then $I_D=0$ mA.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Depletion-Type MOSFET :Basic Operation and Characteristics

For **positive** values of V_{GS} , the positive gate will draw additional electrons (free carriers) from the p-type substrate and hence I_D increases.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Basic MOSFET Operation

A depletion-type MOSFET can operate in two modes:

6

Fundumental of Electronic I Msc: Munther Naif Thiyab

D-Type MOSFET in Depletion Mode

Depletion Mode

The characteristics are similar to a JFET.

- When $V_{GS} = 0$ V, $I_D = I_{DSS}$
- When $V_{GS} < 0$ V, $I_D < I_{DSS}$
- The formula used to plot the transfer curve still applies:

$$\mathbf{I}_{\mathbf{D}} = \mathbf{I}_{\mathbf{DSS}} \left(1 - \frac{\mathbf{V}_{\mathbf{GS}}}{\mathbf{V}_{\mathbf{P}}} \right)^2$$

 $\downarrow I_D$ (mA)

Fundumental of Electronic I Msc: Munther Naif Thiyab

D-Type MOSFET in Enhancement Mode

- $V_{GS} > 0 V$
- I_D increases above I_{DSS}
- The formula used to plot the transfer curve still applies:

Note that V_{GS} is now a positive polarity

Fundumental of Electronic I Msc: Munther Naif Thiyab

9

Fundumental of Electronic I Msc: Munther Naif Thiyab

D-Type MOSFET Symbols

(a) *n*-channel depletion-type MOSFETs ,(b) *p*-channel depletion-type MOSFETs

10