

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter 6 : Field Effect Transistors Lec06_p4 Munther N. Thiyab

2019-2020

Fundumental of Electronic I Msc: Munther Naif Thiyab

Enhancement-Type MOSFET Construction

- The Drain (D) and Source (S) connect to the to *n*-doped regions.
- The Gate (G) connects to the *p*-doped substrate via a thin insulating layer of SiO₂
- There is no channel
- The *n*-doped material lies on a *p*doped substrate that may have an additional terminal connection called the Substrate (SS)

Fundumental of Electronic I Msc: Munther Naif Thiyab

Enhancement-Type MOSFET Construction

- For $V_{GS}=0$, $I_D=0$ (no channel).
- For V_{DS} some positive voltage, and $V_{GS}=0$, two reverse biased p-n junctions and no significant flow between drain and source.
- For $V_{GS}>0$ and $V_{DS}>0$, the positive voltage at gate pressure holes to enter deeper regions of the p-substrate, and the electrons in p-substrate will be attracted to the positive gate.
- The level of V_{GS} that results in the significant increase in drain current is called *threshold voltage* (V_T).
- For $V_{GS} \leq V_T$, $I_D = 0$ mA.

Fundumental of Electronic I Msc: Munther Naif Thiyab

Basic Operation of the E-Type MOSFET

The enhancement-type MOSFET operates only in the enhancement mode.

- V_{GS} is always positive.
- As V_{GS} increases, I_D increases
- As V_{GS} is kept constant and V_{DS} is increased, then I_D saturates (I_{DSS}) and the saturation level, V_{DSsat} is reached
- V_{DSsat} can be calculated by:

$$\mathbf{V}_{\mathbf{Dsat}} = \mathbf{V}_{\mathbf{GS}} - \mathbf{V}_{\mathbf{T}}$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

14

E-Type MOSFET Transfer Curve

Where: V_T = threshold voltage or voltage at which the MOSFET turns on k, a constant, can be determined by using values at a specific point and the formula: $\mathbf{k} = \frac{\mathbf{I}_{\mathbf{D}(\mathbf{ON})}}{(\mathbf{V}_{\mathbf{GS}(\mathbf{ON})} - \mathbf{VT})^2}$

Fundumental of Electronic I Msc: Munther Naif Thiyab

15

E-Type MOSFET Transfer Curve

Substituting $I_D(on) = 10$ mA when $V_{GS}(on) = 8V$ from the characteristics:

$$k = \frac{10 \text{ mA}}{(8-2)^2} = 0.278 \times 10^{-3} \text{ A/V}^2 \implies I_D = 0.278 \times 10^{-3} (V_{GS} - 2V)^2$$

Fundumental of Electronic I Msc: Munther Naif Thiyab

p-Channel E-Type MOSFETs $I_D(mA)$ $\downarrow I_D$ (mA) $V_{GS} = -6 \text{ V}$ 8 8 6 5 $V_{GS} = -5 \text{ V}$ 4 n -o SS $V_{GS} = -4 \text{ V}$ $V_{GS} = -3 \text{ V}$ + \ -6 -5 -4 -3 -2 -1 0 0 V_{GS} VDS $V_{GS} = V_T = -2 \text{ V}$ V_T (a) (b) (c)

The *p*-channel enhancement-type MOSFET is similar to the *n*-channel, except that the voltage polarities and current directions are reversed.

Fundumental of Electronic I Msc: Munther Naif Thiyab

MOSFET Symbols

(b) *p*-channel enhancement-type MOSFE is a

17