

Fundumental of Electronic I Msc: Munther Naif Thiyab

Fundumantal of Electronic II

Second Class

Chapter08: FET Amplifier Lec08_p1
Munther N. Thiyab

2019-2020

Introduction

FETs provide:

- Excellent voltage gain
- High input impedance
- Low-power consumption
- Good frequency range

FET Small-Signal Model

Transconductance

The relationship of a change in \boldsymbol{I}_D to the corresponding change in \boldsymbol{V}_{GS} is called transconductance

Transconductance is denoted g_m and given by:

$$\mathbf{g_m} = \frac{\Delta \mathbf{I_D}}{\Delta \mathbf{V_{GS}}}$$

Graphical Determination of g_m

Mathematical Definitions of g_m

$$\mathbf{g_m} = \frac{\Delta \mathbf{I_D}}{\Delta \mathbf{V_{GS}}}$$

$$\mathbf{g_m} = \frac{2\mathbf{I_{DSS}}}{|\mathbf{V_P}|} \left[1 - \frac{\mathbf{V_{GS}}}{\mathbf{V_P}} \right]$$

Where
$$V_{GS} = 0V$$
 $g_{m0} = \frac{2I_{DSS}}{|V_P|}$

$$\mathbf{g_m} = \mathbf{g_{m0}} \left[1 - \frac{\mathbf{V_{GS}}}{\mathbf{V_P}} \right]$$

Where
$$1 - \frac{V_{GS}}{V_P} = \sqrt{\frac{I_D}{I_{DSS}}}$$

$$g_m = g_{m0} \left(1 - \frac{V_{GS}}{V_P} \right) = g_{m0} \sqrt{\frac{I_D}{I_{DSS}}}$$

FET Impedance

Input impedance:

$$\mathbf{Z_i} = \infty \Omega$$

Output Impedance:

$$\mathbf{Z_o} = \mathbf{r_d} = \frac{1}{\mathbf{y_{os}}}$$

where:

$$\mathbf{r_d} = \frac{\Delta \mathbf{V_{DS}}}{\Delta \mathbf{I_D}} \Big|_{\mathbf{V_{GS}} = \mathbf{constant}}$$

 y_{os} = admittance parameter listed on FET specification sheets.

FET AC Equivalent Circuit

Summary Table

Troubleshooting

Check the DC bias voltages:

If not correct check power supply, resistors, FET. Also check to ensure that the coupling capacitor between amplifier stages is OK.

Check the AC voltages:

If not correct check FET, capacitors and the loading effect of the next stage

Practical Applications

Three-Channel Audio Mixer
Silent Switching
Phase Shift Networks
Motion Detection System

