Second Class

Chapter08: FET Amplifier
Lec08_p2
Munther N. Thiyab

2019-2020

Common-Source (CS) Fixed-Bias Circuit

The input is on the gate and the output is on the drain

There is a 180° phase shift between input and output

Calculations

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{G}}
$$

Output impedance:

$$
\begin{aligned}
& Z_{0}=R_{D} \| r_{d} \\
& Z_{\mathbf{o}} \cong R_{D} \mid \quad r_{d} \geq 10 R_{D}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& A_{v}=\frac{V_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}}=-g_{m}\left(\mathbf{r}_{\mathbf{d}} \| R_{\mathrm{D}}\right) \\
& A_{\mathbf{v}}=\frac{\mathbf{V}_{\mathbf{0}}}{\mathbf{V}_{\mathbf{i}}}=-\left.\mathbf{g}_{\mathbf{m}} \mathbf{R}_{\mathbf{D}}\right|_{\mathbf{r}_{\mathbf{d}} \geq 10 \mathbf{R}_{\mathbf{D}}}
\end{aligned}
$$

Common-Source (CS) Self-Bias Circuit

This is a common-source amplifier configuration, so the input is on the gate and the output is on the drain

There is a 180° phase shift between input and output

Calculations

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{G}}
$$

Output impedance:

$$
\begin{aligned}
& Z_{0}=r_{d} \| R_{D} \\
& \left.\mathbf{Z}_{\mathbf{0}} \cong \mathbf{R}_{\mathbf{D}}\right|_{\mathbf{r}_{\mathbf{d}} \geq 10 \mathbf{R}_{\mathbf{D}}}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& A_{v}=-g_{m}\left(r_{d} \| R_{D}\right) \\
& A_{v}=-\mathbf{g}_{m} R_{D} \mid \quad \mathbf{r}_{d} \geq \mathbf{1 0 R}_{D}
\end{aligned}
$$

Common-Source (CS) Self-Bias Circuit

Removing C_{s} affects the gain of the circuit.

Calculations

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{G}}
$$

Output impedance:

$$
\left.Z_{0} \cong R_{D}\right|_{r_{d} \geq 10 R_{D}}
$$

Voltage gain:

$$
\begin{aligned}
& A_{v}=\frac{V_{\mathbf{0}}}{V_{i}}=-\frac{g_{m} R_{D}}{1+g_{m} R_{S}+\frac{R_{D}+R_{S}}{r_{d}}} \\
& A_{v}=\frac{V_{\mathbf{0}}}{V_{i}}=-\left.\frac{g_{m} R_{D}}{1+g_{m} R_{S}}\right|_{r_{d} \geq 10\left(R_{D}+R_{S}\right)}
\end{aligned}
$$

Common-Source (CS) Voltage-Divider Bias

This is a common-source amplifier configuration, so the input is on the gate and the output is on the drain.

Impedances

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{1}} \| \mathbf{R}_{\mathbf{2}}
$$

Output impedance:

$$
\begin{aligned}
& Z_{0}=r_{d} \| R_{D} \\
& \left.Z_{\mathbf{o}} \cong R_{D}\right|_{r_{d} \geq 10 R_{D}}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& A_{v}=-g_{m}\left(\mathbf{r}_{\mathbf{d}} \| R_{D}\right) \\
& A_{v}=-\mathbf{g}_{m} R_{D} \mid{ }_{\mathbf{r}_{d} \geq 10 R_{D}}
\end{aligned}
$$

Source Follower (Common-Drain) Circuit

In a common-drain amplifier configuration, the input is on the gate, but the output is from the source.

There is no phase shift between input and output.

Impedances

Input impedance:

$$
\mathbf{Z}_{\mathbf{i}}=\mathbf{R}_{\mathbf{G}}
$$

Output impedance:

$$
\begin{aligned}
& Z_{0}=r_{d}\left\|R_{S}\right\| \frac{1}{g_{m}} \\
& Z_{o} \cong R_{S} \|\left.\frac{1}{g_{m}}\right|_{r_{d} \geq 10 R_{S}}
\end{aligned}
$$

Voltage gain:

$$
\begin{aligned}
& A_{V}=\frac{V_{0}}{V_{i}}=\frac{g_{m}\left(r_{d} \| R_{S}\right)}{1+g_{m}\left(r_{d} \| R_{S}\right)} \\
& A_{v}=\frac{V_{0}}{V_{i}}=\left.\frac{g_{m} R_{S}}{1+g_{m} R_{S}}\right|_{r_{d} \geq 10}
\end{aligned}
$$

Common-Gate (CG) Circuit

The input is on the source and the output is on the drain.

There is no phase shift between input and output.

Calculations

Input impedance:

$$
\begin{aligned}
& Z_{i}=R_{S} \|\left[\frac{r_{d}+R_{D}}{1+g_{m} r_{d}}\right] \\
& Z_{i} \cong R_{S} \|\left.\frac{1}{g_{m}}\right|_{r_{d} \geq 10 R_{D}}
\end{aligned}
$$

Output impedance:

$$
\begin{aligned}
& Z_{0}=\mathbf{R}_{\mathbf{D}} \| r_{\mathbf{d}} \\
& \left.\mathbf{Z}_{\mathbf{0}} \cong \mathbf{R}_{\mathbf{D}}\right|_{\mathrm{r}_{\mathrm{d}} \geq 10}
\end{aligned}
$$

Voltage gain:

$$
\left.A_{v}=\frac{V_{0}}{V_{i}}=\frac{\left[g_{m} R_{D}+\frac{R_{D}}{r_{d}}\right]}{\left[1+\frac{R_{D}}{r_{d}}\right]} \quad A_{v}=g_{m} R_{D} \right\rvert\, r_{d} \geq 10 R_{D}
$$

