

Lab. Name: Electronic I Experiment no.: 1 Lab. Supervisor: Munther N. Thiyab

## **Experiment #1- Part#2**

## **Characteristics of Bipolar Junction**

## • Transistor h-parameters

In order to analyze transistor amplifier operation, an AC small signal model for the BJT is required. The most widely used equivalent circuit model to describe the transistor behavior at low and mid-band frequencies is the h-parameter model. For the common emitter configuration, when the transistor is considered as a linear two port network, the input small signal AC voltage  $(v_{be})$  and the output small signal AC current  $(i_c)$  can be expressed in terms of the input current  $(i_b)$  and output voltage  $(v_{ce})$  by the following equations:

$$v_{be} = h_{ie}.i_b + h_{re}.v_{ce}$$
$$i_c = h_{fe}.i_b + h_{oe}.v_{ce}$$

The common emitter hybrid parameters in equation 4 are defined as:

$$h_{ie} = \text{input resistance} = \frac{v_{be}}{i_b} |_{v_{ce=0}}$$

 $h_{re}$  = reverse transfer voltage ratio =  $\frac{v_{be}}{v_{ce}} |_{i_{b=0}}$ 

 $h_{fe}$  = forward transfer current ratio =  $\frac{i_c}{i_b} |_{v_{cl}}$ 

$$h_{oe}$$
 = output conductance =  $\frac{i_c}{v_{ce}} \mid i_{b=0}$ 

The unit of  $h_{ie}$  is the Ohm, and that of  $h_{oe}$  is the Siemens, while he and he are unit-less. This versatility in the units is the reason behind the name of the hybrid parameters.

Fig.6 shows the small-signal AC equivalent circuit of the transistor in the common emitter configuration.



Lab. Name: Electronic I Experiment no.: 1 Lab. Supervisor: Munther N. Thiyab



Figure 6: Common Emitter Transistor Hybrid Equivalent Circuit Model

The h-parameters of the transistor can be determined graphically from its input and output characteristics. The parameters  $h_{ie}$  and hre are determined from the input (or base) characteristics, while the parameters  $h_{fe}$  and  $h_{oe}$  are obtained from the output (or collector) characteristics.

Fig.7 presents the method of finding the input resistance  $h_{ie}$  graphically at the specified Q-point of the transistor. It should be noted that h-parameters depend on the specific operating point (Q-Point) of the transistor. As observed from the figure,  $h_{ie}$  is determined from the equation:

$$h_{ie} = \frac{\Delta V_{BE}}{\Delta I_B} \Big|_{V_{CE}=const.}$$

The small increments  $\Delta I_B$  and  $\Delta V_{BE}$  should be taken around the Q-point as depicted in Fig.7.

The parameter  $h_{re}$  can also be obtained from the input characteristics as shown in Fig.8. In this case:

$$h_{re} = \frac{\Delta V_{BE}}{\Delta V_{CE}} \Big|_{I_{B=const.}}$$

The base current  $I_B$  should be taken as the Q-point operating value  $I_{BQ}$ . The parameter  $h_{re}$  is very low and can be ignored in most practical cases.



Lab. Name: Electronic I Experiment no.: 1 Lab. Supervisor: Munther N. Thiyab



Figure 7: Graphical Determination of  $h_{ie}$  from the Input Characteristics

The small signal current gain  $h_{fe}$  can be determined from the output characteristics of the transistor as shown in Fig.9. As shown from this figure,  $h_{fe}$  can be found from:

$$h_{fe} = \frac{\Delta I_C}{\Delta I_B} \Big|_{V_{CE=const.}}$$

Actually,  $h_{fe}$  represents the AC beta of the transistor:

$$h_{fe} = \beta_{ac}$$





Figure 9: Graphical Determination of  $h_{fe}$  from the Output Characteristics

If  $I_C$  is plotted against  $I_B$  for a given  $V_{CE}$ , then an approximate linear relation can be obtained in the active region of the transistor as shown in Fig.10.



Figure 10:  $I_C$  versus  $I_B$  for a Typical Transistor in the Active Region

The output conductance  $h_{oe}$  can also be gotten from the output characteristics of the transistor at a specific Q-point as shown in Fig.11. In this case:



Lab. Name: Electronic I Experiment no.: 1 Lab. Supervisor: Munther N. Thiyab



Figure 11: Graphical Determination of hoe from the Output Characteristics