University of Anbar **College of Engineering** Dept. of Electrical Engineering

Lab. Name: Electronic I Experiment no.: 2 Lab. Supervisor: Munther N. Thiyab

University of Anbar College of Engineering Dept. of Electrical Engineering

2. Measure the DC voltages V_C and V_B using digital multi-meters. Determine the quiescent base current, collector current, and collector- emitter voltage, where:

$$I_{BQ} = \frac{V_{CC} - V_B}{R_B}$$
$$I_{CQ} = \frac{V_{CC} - V_C}{R_C}$$
$$V_{CEQ} = V_C$$
$$V_{BEQ} = V_B$$

3. Measure the transistor current gain as follows:

ß -	I_{CQ}	
Pdc -	I _{BQ}	

4. Calculate the expected values of I_{BQ} , I_{CQ} , and V_{CEQ} . Use the value of β determined in step 3 above. Assume that $V_{BE} = 0.7$ theoretically. Tabulate you results as shown in Table 1.

Transistor 1 BC337		
Quantity	Measured	Calculated
V _B		
V _c		
V _{BEQ}		
V _{CEQ}		
I _{BQ}		
I _{CQ}		
V _{CEQ}		
β_{dc}		

Table 1: Measured and Calculated Transistor Parameters for the Fixed Bias Circuit

Lab. Name: Electronic I Experiment no.: 2 Lab. Supervisor: Munther N. Thiyab

5. Connect the voltage-divider bias circuit shown in Fig.4. (use npn transistor in (M100)).

Figure 4: Practical Voltage-Divider Transistor Bias Circuit

6. Measure the DC voltages V_B , V_E , and V_C using digital multi-meters. Determine the quiescent point of the transistor as follows:

$$I_{CQ} \cong I_{EQ} = \frac{V_E}{R_E}$$
$$V_{CC} = V_{CEQ} + I_{CQ} \cdot R_C$$
$$V_{CEQ} = V_{CC} - I_{CQ} \cdot R_C$$

Discussion

- 1. Perform the theoretical calculations to determine the Q-point for both circuits and for each transistor, and compare them with the measured values.
- 2. Determine the drift in the Q-point for the two biasing circuits and therefore compare their bias stabilities.
- 3. Sketch the DC load line for the fixed bias circuit for each transistor case and place the Q-point on it.
- 4. Sketch the DC load line for the voltage divider bias circuit for each transistor case and place the Q-point on it. Is there a difference between the load lines in this case?
- 5. What is the effect of increasing resistor R_2 in the voltage-divider bias circuit on I_{CQ} ? How should we select its practical value for better stability considerations?
- 6. What is the effect of decreasing resistor R_B on I_{CQ} for the fixed bias circuit? What is its minimum value to ensure that the transistor is working in the active region?
- 7. For the fixed bias circuit of Fig.3, if the minimum β of the transistor is specified in the datasheet as 50, and the maximum value is 250, then determine the range of the Q-point of the transistor.
- 8. Sketch the circuit diagram of the collector-feedback bias circuit and compare its stability with that of the voltage-divider bias circuit.