First-Order Linear Differential Equations:

A First order linear differential equation is an equation of the form

$$y' + P(x)y = Q(x).$$

Where P and Q are functions of x. If the equation is written in this form it is called standard form. The equation is called *first* order because it only involves the function y and first derivatives of y. We can solve this equation in general but it is better to understand how to solve it than it is to just memorize the solution.

Solving y' + P(x)y = Q(x):

The general solution to the first order linear differential equation is given by

$$y(x) = \frac{1}{u(x)} \int u(x)Q(x)dx,$$

with

$$u(x) = e^{\int P(x)dx}.$$

Now let's do an example.

Calculus IV Dr. Adnan Salih

Example: y' + 4xy = x

First we note that this is already in standard form with P(x)=4x, and Q(x)=x.

The first step is to find the integrating factor

$$u(x) = e^{\int P(x)dx} = e^{\int 4xdx} = e^{2x^2}.$$

Note that we do not need the general form of the integral until the last step.

The next step is to find $y = \frac{1}{u(x)} \int u(x)Q(x)dx$.

Recall that $\frac{1}{e^{2x^2}} = e^{-2x^2}$.

Example: y' + 4xy = x continued

We have $y=\frac{1}{u(x)}\int u(x)Q(x)dx$, with $u(x)=e^{2x^2},$ so we have to solve

$$y = e^{-2x^2} \int x e^{2x^2} dx.$$

This integral can be done with the method of substitution, let $z=2x^2$, then dz=4xdx

$$\int xe^{2x^2}dx = \int \frac{1}{4}e^zdz = \frac{1}{4}e^z + C = \frac{1}{4}e^{2x^2} + C.$$

Almost done, now let

$$y = e^{-2x^2} \left[\frac{1}{4} e^{2x^2} + C \right] = \frac{1}{4} + Ce^{-2x^2}.$$

Another Example:

Find the solution to

$$xy' + y = x^2 + 1$$

First we write

$$y' + \frac{1}{x}y = x + \frac{1}{x} \Rightarrow P(x) = \frac{1}{x} \text{ and } Q(x) = x + \frac{1}{x}.$$

Therefore

$$u(x) = e^{\int P(x)dx} = x,$$

and

$$y = \frac{1}{u(x)} \int Q(x)u(x)dx = \frac{1}{x} \int x^2 + 1dx = \frac{1}{3}x^2 + 1 + Cx^{-1}.$$

Let's check our answer $y = \frac{1}{3}x^2 + 1 + Cx^{-1}$:

$$y' = \frac{2}{3}x - Cx^{-2}$$

$$\Rightarrow xy' + y = \frac{2}{3}x^2 - Cx^{-1} + \frac{1}{3}x^2 + 1 + Cx^{-1}$$

$$\Rightarrow xy' + x = x^2 + 1!$$

Exercises:

1-4 Find the general solution of each equation below.

1.
$$y' - t^2 y = 4t^2$$

2.
$$y' + 10y = t^2$$

3.
$$\frac{1}{t^2}y' - e^{t^3}y = 0$$

$$4. y' - y = 2e^t$$

5-16 Solve each initial value problem. What is the largest into which a unique solution is guaranteed to exist?

5.
$$y' + 2y = te^{-t}$$
, $y(0) = 2$

6.
$$y' - 11y = 4e^{6t}$$
, $y(0) = 9$

7.
$$ty' - y = t^2 + t$$
, $y(1) = 5$

8.
$$(t^2 + 1)y' - 2ty = t^3 + t$$
, $y(0) = -4$

9.
$$y' + (2t - 6t^2) y = 0$$
, $y(0) = -8$

10.
$$t^2y' + 4ty = \frac{2}{t}$$
, $y(-2) = 0$

11.
$$(t^2 - 49)y' + 4ty = 4t$$
, $y(0) = 1/7$

12.
$$y' - y = t^2 + t$$
, $y(0) = 3$

13.
$$y' + y = e^t$$
, $y(0) = 1$

14.
$$ty' + 4y = 4$$
, $y(-2) = 6$

15.
$$\tan(t)y' - \sec(t)\tan^2(t)y = 0,$$
 $y(0) = \pi$

16.
$$(t^2 + 1)y' + 2ty = 0$$
, $y(3) = -1$