

Calculus IV Dr. Adnan Salih

#### Solve first order differential equations by exact method

#### **DEFINITION 2.4.1** Exact Equation

A differential expression M(x, y) dx + N(x, y) dy is an exact differential in a region R of the xy plane if it corresponds to the differential of some function f(x, y) defined in R. A first order differential equation of the form

$$M(x, y) dx + N(x, y) dy = 0$$

is said to be an exact equation if the expression on the left hand side is an exact differential.

## THEOREM 2.4.1 Criterion for an Exact Differential

Let M(x, y) and N(x, y) be continuous and have continuous first partial derivatives in a rectangular region R defined by a < x < b, c < y < d. Then a necessary and sufficient condition that M(x, y) dx + N(x, y) dy be an exact differential is

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$$
 (4)



### **Summary: Exact Equations**

$$M(x,y) + N(x,y) y' = 0$$

Where there exists a function  $\psi(x,y)$  such that

$$\frac{\partial \psi}{\partial x} = M(x, y)$$
 and  $\frac{\partial \psi}{\partial y} = N(x, y)$ .

1. Verification of exactness: it is an exact equation if and only if

$$\frac{\partial M}{\partial v} = \frac{\partial N}{\partial x}.$$

2. The general solution is simply

$$\psi(x,y) = C.$$

Where the function  $\psi(x,y)$  can be found by combining the result c two integrals (write down each distinct term only once, even if it appears in both integrals):

$$\psi(x, y) = \int M(x, y) dx$$
, and

$$\psi(x,y) = \int N(x,y) \, dy$$

Example: Solve the equation

$$(y^4 - 2) + 4xy^3y' = 0$$

First identify that  $M(x,y) = y^4 - 2$ , and  $N(x,y) = 4xy^3$ .

Then make sure that it is indeed an exact equation:

$$\frac{\partial M}{\partial y} = 4y^3$$
 and  $\frac{\partial N}{\partial x} = 4y^3$ 

Finally find  $\psi(x,y)$  using partial integrations. First, we integrate M with respect to x. Then integrate N with respect to y.

$$\psi(x,y) = \int M(x,y) dx = \int (y^4 - 2) dx = xy^4 - 2x + C_1(y),$$

$$\psi(x,y) = \int N(x,y) dy = \int 4xy^3 dy = xy^4 + C_2(x)$$

Combining the result, we see that  $\psi(x,y)$  must have 2 non-constant terms:  $xy^4$  and -2x. That is, the (implicit) general solution is:  $xy^4 - 2x = C$ .

Now suppose there is the initial condition y(-1) = 2. To find the (implicit) particular solution, all we need to do is to substitute x = -1 and y = 2 into the general solution. We then get C = -14.

Therefore, the particular solution is  $xy^4 - 2x = -14$ .



Calculus IV Dr. Adnan Salih

Example: Solve the initial value problem

$$(y\cos(xy) + \frac{y}{x} + 2x)dx + (x\cos(xy) + \ln x + e^y)dy = 0$$
,  $y(1) = 0$ 

First, we see that 
$$M(x, y) = y \cos(xy) + \frac{y}{x} + 2x$$
 and  $N(x, y) = x \cos(xy) + \ln x + e^y$ .

Verifying:

$$\frac{\partial M}{\partial y} = -xy\sin(xy) + \cos(xy) + \frac{1}{x} = \frac{\partial N}{\partial x} = -xy\sin(xy) + \cos(xy) + \frac{1}{x}$$

Integrate to find the general solution:

$$\psi(x,y) = \int \left( y \cos(xy) + \frac{y}{x} + 2x \right) dx = \sin(xy) + y \ln x + x^2 + C_1(y)$$

as well,

$$\psi(x,y) = \int (x\cos(xy) + \ln x + e^y) dy = \sin(xy) + y\ln x + e^y + C_2(x)$$

Hence, 
$$\sin xy + y \ln x + e^y + x^2 = C$$
.

Apply the initial condition: x = 1 and y = 0:

$$C = \sin 0 + 0 \ln (1) + e^{0} + 1 = 2$$

The particular solution is then  $\sin xy + y \ln x + e^y + x^2 = 2$ .

# **Exercises**

1–9. Determine if the equation is exact, and if it is exact, find the general solution.

1. 
$$(y^2 + 2t) + 2tyy' = 0$$

2. 
$$y - t + (t + 2y)y' = 0$$

3. 
$$2t^2 - y + (t + y^2)y' = 0$$

4. 
$$y^2 + 2tyy' + 3t^2 = 0$$

5. 
$$(3y - 5t) + 2yy' - ty' = 0$$

6. 
$$2ty + (t^2 + 3y^2)y' = 0$$
,  $y(1) = 1$ 

7. 
$$2ty + 2t^3 + (t^2 - y)y' = 0$$

8. 
$$t^2 - y - ty' = 0$$

9. 
$$(y^3 - t)y' = y$$