

Second-Order Linear Differential Equations

A second-order linear differential equation has the form

$$P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = G(x)$$

where P, Q, R, and G are continuous functions. We saw in Section 7.1 that equations of this type arise in the study of the motion of a spring. In Additional Topics: Applications of Second-Order Differential Equations we will further pursue this application as well as the application to electric circuits.

In this section we study the case where G(x) = 0, for all x, in Equation 1. Such equations are called homogeneous linear equations. Thus, the form of a second-order linear homogeneous differential equation is

$$P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x)y = 0$$

If $G(x) \neq 0$ for some x, Equation 1 is nonhomogeneous and is discussed in Additional Topics: Nonhomogeneous Linear Equations.

Two basic facts enable us to solve homogeneous linear equations. The first of these says that if we know two solutions y_1 and y_2 of such an equation, then the **linear combination** $y = c_1y_1 + c_2y_2$ is also a solution.

Theorem If y₁ and y₂ are linearly independent solutions of Equation 2, and P(x) is never 0, then the general solution is given by

$$y(x) = c_1y_1(x) + c_2y_2(x)$$

where c_1 and c_2 are arbitrary constants.

Theorem 4 is very useful because it says that if we know two particular linearly independent solutions, then we know every solution.

In general, it is not easy to discover particular solutions to a second-order linear equation. But it is always possible to do so if the coefficient functions P, Q, and R are constant functions, that is, if the differential equation has the form

5

$$ay'' + by' + cy = 0$$

where a, b, and c are constants and $a \neq 0$.

It's not hard to think of some likely candidates for particular solutions of Equation 5 if we state the equation verbally. We are looking for a function y such that a constant times its second derivative y" plus another constant times y' plus a third constant times y is equal to 0. We know that the exponential function $y = e^{rx}$ (where r is a constant) has the property that its derivative is a constant multiple of itself: $y' = re^{rx}$. Furthermore, $y'' = r^2e^{rx}$. If we substitute these expressions into Equation 5, we see that $y = e^{rx}$ is a solution if

$$ar^2e^{rx} + bre^{rx} + ce^{rx} = 0$$

or

$$(ar^2 + br + c)e^{rx} = 0$$

But e^{rx} is never 0. Thus, $y = e^{rx}$ is a solution of Equation 5 if r is a root of the equation

6

$$ar^2 + br + c = 0$$

Equation 6 is called the **auxiliary equation** (or **characteristic equation**) of the differential equation ay'' + by' + cy = 0. Notice that it is an algebraic equation that is obtained from the differential equation by replacing y'' by r^2 , y' by r, and y by 1.

Sometimes the roots r_1 and r_2 of the auxiliary equation can be found by factoring. In other cases they are found by using the quadratic formula:

7

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

We distinguish three cases according to the sign of the discriminant $b^2 - 4ac$.

CASE I $b^2 - 4ac > 0$

In this case the roots r_1 and r_2 of the auxiliary equation are real and distinct, so $y_1 = e^{r_1x}$ and $y_2 = e^{r_2x}$ are two linearly independent solutions of Equation 5. (Note that e^{r_2x} is not a constant multiple of e^{r_1x} .) Therefore, by Theorem 4, we have the following fact.

8 If the roots r_1 and r_2 of the auxiliary equation $ar^2 + br + c = 0$ are real and unequal, then the general solution of ay'' + by' + cy = 0 is

$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

EXAMPLE 1 Solve the equation y'' + y' - 6y = 0.

SOLUTION The auxiliary equation is

$$r^2 + r - 6 = (r - 2)(r + 3) = 0$$

whose roots are r = 2, -3. Therefore, by (8) the general solution of the given differential equation is

$$y = c_1 e^{2x} + c_2 e^{-3x}$$

We could verify that this is indeed a solution by differentiating and substituting into the differential equation.

EXAMPLE 2 Solve $3\frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$.

SOLUTION To solve the auxiliary equation $3r^2 + r - 1 = 0$ we use the quadratic formula:

$$r = \frac{-1 \pm \sqrt{13}}{6}$$

Since the roots are real and distinct, the general solution is

$$y = c_1 e^{(-1+\sqrt{13})x/6} + c_2 e^{(-1-\sqrt{13})x/6}$$

CASE II $b^2 - 4ac = 0$

In this case $r_1 = r_2$; that is, the roots of the auxiliary equation are real and equal. Let's denote by r the common value of r_1 and r_2 . Then, from Equations 7, we have

 $r = -\frac{b}{2a} \quad \text{so} \quad 2ar + b = 0$

We know that $y_1 = e^{rx}$ is one solution of Equation 5. We now verify that $y_2 = xe^{rx}$ is also a solution:

$$ay_2'' + by_2' + cy_2 = a(2re^{rx} + r^2xe^{rx}) + b(e^{rx} + rxe^{rx}) + cxe^{rx}$$

= $(2ar + b)e^{rx} + (ar^2 + br + c)xe^{rx}$
= $0(e^{rx}) + 0(xe^{rx}) = 0$

The first term is 0 by Equations 9; the second term is 0 because r is a root of the auxiliary equation. Since $y_1 = e^{rx}$ and $y_2 = xe^{rx}$ are linearly independent solutions, Theorem 4 provides us with the general solution.

If the auxiliary equation $ar^2 + br + c = 0$ has only one real root r, then the general solution of ay'' + by' + cy = 0 is

$$y = c_1 e^{rx} + c_2 x e^{rx}$$

CASE III $b^2 - 4ac < 0$

In this case the roots r_1 and r_2 of the auxiliary equation are complex numbers. (See Appendix I for information about complex numbers.) We can write

$$r_1 = \alpha + i\beta$$
 $r_2 = \alpha - i\beta$

where α and β are real numbers. [In fact, $\alpha = -b/(2a)$, $\beta = \sqrt{4ac - b^2}/(2a)$.] Then, using Euler's equation

$$e^{i\theta} = \cos \theta + i \sin \theta$$

from Appendix I, we write the solution of the differential equation as

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x} = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x}$$

$$= C_1 e^{\alpha x} (\cos \beta x + i \sin \beta x) + C_2 e^{\alpha x} (\cos \beta x - i \sin \beta x)$$

$$= e^{\alpha x} [(C_1 + C_2) \cos \beta x + i(C_1 - C_2) \sin \beta x]$$

$$= e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$$

where $c_1 = C_1 + C_2$, $c_2 = i(C_1 - C_2)$. This gives all solutions (real or complex) of the differential equation. The solutions are real when the constants c_1 and c_2 are real. We summarize the discussion as follows.

If the roots of the auxiliary equation $ar^2 + br + c = 0$ are the complex numbers $r_1 = \alpha + i\beta$, $r_2 = \alpha - i\beta$, then the general solution of ay'' + by' + cy = 0 is

$$y = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x)$$

EXAMPLE 4 Solve the equation y'' - 6y' + 13y = 0.

SOLUTION The auxiliary equation is $r^2 - 6r + 13 = 0$. By the quadratic formula, the roots are

$$r = \frac{6 \pm \sqrt{36 - 52}}{2} = \frac{6 \pm \sqrt{-16}}{2} = 3 \pm 2i$$

By (11) the general solution of the differential equation is

$$y = e^{3x}(c_1 \cos 2x + c_2 \sin 2x)$$

Initial-Value and Boundary-Value Problems

An initial-value problem for the second-order Equation 1 or 2 consists of finding a solution y of the differential equation that also satisfies initial conditions of the form

$$y(x_0) = y_0$$
 $y'(x_0) = y_1$

EXAMPLE 5 Solve the initial-value problem

$$y'' + y' - 6y = 0$$
 $y(0) = 1$ $y'(0) = 0$

SOLUTION From Example 1 we know that the general solution of the differential equation is

$$y(x) = c_1 e^{2x} + c_2 e^{-3x}$$

Differentiating this solution, we get

$$y'(x) = 2c_1e^{2x} - 3c_2e^{-3x}$$

To satisfy the initial conditions we require that

$$y(0) = c_1 + c_2 = 1$$

$$y'(0) = 2c_1 - 3c_2 = 0$$

From (13) we have $c_2 = \frac{2}{3}c_1$ and so (12) gives

$$c_1 + \frac{2}{3}c_1 = 1$$
 $c_1 = \frac{3}{5}$ $c_2 = \frac{2}{5}$

Thus, the required solution of the initial-value problem is

$$y = \frac{3}{5}e^{2x} + \frac{2}{5}e^{-3x}$$

EXAMPLE 6 Solve the initial-value problem

$$y'' + y = 0$$
 $y(0) = 2$ $y'(0) = 3$

SOLUTION The auxiliary equation is $r^2 + 1 = 0$, or $r^2 = -1$, whose roots are $\pm i$. Thus $\alpha = 0$, $\beta = 1$, and since $e^{0x} = 1$, the general solution is

$$y(x) = c_1 \cos x + c_2 \sin x$$

Since

$$y'(x) = -c_1 \sin x + c_2 \cos x$$

the initial conditions become

$$y(0) = c_1 = 2$$
 $y'(0) = c_2 = 3$

Therefore, the solution of the initial-value problem is

$$y(x) = 2\cos x + 3\sin x$$

Exercise

1-13 Solve the differential equation.

1.
$$y'' - 6y' + 8y = 0$$

3.
$$y'' + 8y' + 41y = 0$$

5.
$$y'' - 2y' + y = 0$$

7.
$$4y'' + y = 0$$

9.
$$4y'' + y' = 0$$

11.
$$\frac{d^2y}{dt^2} - 2\frac{dy}{dt} - y = 0$$

13.
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + y = 0$$

2.
$$y'' - 4y' + 8y = 0$$

4.
$$2y'' - y' - y = 0$$

6.
$$3y'' = 5y'$$

8.
$$16y'' + 24y' + 9y = 0$$

10.
$$9y'' + 4y = 0$$

12.
$$\frac{d^2y}{dt^2} - 6\frac{dy}{dt} + 4y = 0$$

17-24 Solve the initial-value problem.

17.
$$2y'' + 5y' + 3y = 0$$
, $y(0) = 3$, $y'(0) = -4$

18.
$$y'' + 3y = 0$$
, $y(0) = 1$, $y'(0) = 3$

19.
$$4y'' - 4y' + y = 0$$
, $y(0) = 1$, $y'(0) = -1.5$

20.
$$2y'' + 5y' - 3y = 0$$
, $y(0) = 1$, $y'(0) = 4$

21.
$$y'' + 16y = 0$$
, $y(\pi/4) = -3$, $y'(\pi/4) = 4$

22.
$$y'' - 2y' + 5y = 0$$
, $y(\pi) = 0$, $y'(\pi) = 2$

23.
$$y'' + 2y' + 2y = 0$$
, $y(0) = 2$, $y'(0) = 1$

24.
$$y'' + 12y' + 36y = 0$$
, $y(1) = 0$, $y'(1) = 1$