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Second order linear differentail eqyution with constant coeffitions

>>Sluton of Non-homogeniuos SODEs with constant coeffitions

Theroem: The general solution of the second order nonhomogeneous linear
equation

Y )y q()y = g()

can be expressed in the form
y=ytY

where Y is any specific function that satisfies the nonhomogeneous equation,
and v, = C,y, + C, v, is a general solution of the corresponding
homogeneous equation

y" ‘|-p(f):tr + Q(f).} - O

(That 1s, y; and y, are a pair of fundamental solutions of the corresponding
homogeneous equation; C; and C, are arbitrary constants.)

The term Yo = €y + Ca 1 is called the complementary solution (or the
homogeneous solution) of the nonhomogeneous equation. The term Y is
called the particular solution (or the nonhomogeneous solution) of the same
equation.
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solution of non-homogenious SODEs with constant coefficients (a,b,c) using
udetermined coefficients method

SUMMARY: Method of Undetermined Coefficients

Given ay"' +by +cy=g()

1. Find the complementary solution 1.

9]

Subdivide, if necessary., g(7) into parts: g(7) = &1(7) + 2+(7) ... + g (7).

3. For each gi(7), choose the form of its corresponding particular solution

Y (1) according to:

g1 Yi(1)
P, (1) (A 0"+ Ay 7+ o+ At + Ap)
P,(1) ™ (A, 0+ Ay 7+ A+ Ay) €
P,(1) e cosur and/or Py + Ay T T oo + Ag) e cos ut
P, (1) e sin ut 5Byt + By 0+ o+ Bo) e sinut

Where s = 0, 1, or 2, 1s the minimum number of times the choice
must be multiplied by 7 so that it shares no common terms with ).

P, (1) denotes a n-th degree polynomial. If there is no power of 7
present, then » = 0 and Py(7) = () is just the constant coefficient. If no
exponential term is present, then set the exponent ¢ = 0.

4, Y=Y Y54, .3 ¥

5. The general solution is v = y. + Y.

6. Finally. apply any initial conditions to determine the as yet unknown
coefficients ('), and ', in V..
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Example: y' =20 =3y=e
I ) 3 .

The corresponding homogeneous equation y" — 2y — 3y = 0 has
characteristic equation 7 —2r — 3 =(r+ 1)(r —3) = 0. So the

. . ~t 3t
complementary solution is e = C1e "+ Cre .

The nonhomogeneous equation has g(7) = ¢”'. It is an exponent
function, which does not change form after differentiation: an
exponential function’s derivative will remain an exponential fu
with the same exponent (although its coefficient might change
the effect of the Chain Rule). Therefore, we can very reasonab
expect that ¥(7) is in the form A4 e”’ for some unknown coefficie;
Our job i1s to find this as yet undetermined coefficient.

> 2 - 2 -
Let Y:A32£, thenY’' =2A4e’, and Y"” = 4A4Ae”". Substitute tt
back into the original differential equation:

(44 e — 224" — 3(A ™) = &7

o 3A 823‘ — 82?’
A=—1/3
—1 2t
Hence, Y () = 3 =
- - 1 ,
r — , — Ly 4 T J3r -7 §
Therefore, V=V, +Y =Cle " +C,e e
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Example: V' =2y =3y =3t

The corresponding homogeneous equation is still 3" — 2y — 3y = 0.
Therefore, the complementary solution remains y. = C e f+ (.3(3 :

Now g(7) = 3¢ + 4t — 5. Ttis a degree 2 (i.e., quadratic) polynomial.
Since polynomials, like exponential functions, do not change form
after differentiation: the derivative of a polynomuial is just another
polynomial of one degree less (until it eventually reaches zero). We
expect that Y(7) will, therefore, be a polynomial of the same degree as
that of (7). (Why will their degrees be the same?)

So, we will let ¥ be a generic quadratic polynomial: = A4 +Bi+
C. Itfollows Y' =241+ B,and Y" = 2A. Substitute them into the

equation:
(24) —2QAt+B)—3(Ar +Bt+ C)=3F +4r—5

—34P+(—44-3B)t+(24—-2B—-30)=3F +4¢—5

The corresponding terms on both sides should have the same
coefficients, therefore, equating the coefficients of like terms.

. 3=-34 A4=-1
t: 4=-44-3B — B=0
1: —-5=24-2B-3C C=1

Therefore, Y =~ ¢* + Landy =y + Y= Cre "+ Cye' = + 1,
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Exercises:

1 — 10 Find the general solution of each nonhomogeneous equation.
1. y"+4y=28

2. " +4y=8r-201+8

3. V" +4y=5sin3f— 5cos 3¢

4.y +4y=24e"

5. y"+4y=8cos 2t

6. y"+2'=2te"

7.3+ =6

8. "+ 2y =121

9. y"—6v' =Ty =13c0s2¢+ 34sin 2/

10. y"— 6 — Ty =8¢"— 71— 6




