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Higher Order Linear Equations with Constant Coefficients

The solutions of linear differential equations with constant coetficients of
the third order or higher can be found m simular ways as the solutions of
second order linear equattons. For an n-th order homogeneous lmear
equation with constant coefficients:

)

-
o

| _
ta, 0"V g Hag ap=0,

¥

¥

It has a general solution of the form
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Such a set of linearly independent solutions, and therefore, a general solutic
of the equation, can be found by first solving the differential equation’s
characteristic equation:
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This is a polynomial equation of degree n, therefore, it has » real and/or
complex roots (not necessarily distinct). Those necessary » linearly
independent solutions can then be found using the four rules below.
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(1). If 7 1s a distinct real root, then y = e " is a solution.

(i1). If » = 4 + 1 are distinct complex conjugate roots, then
r 71 ’
V= e’ cos Mt and vy = e sin ui are solutions.
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(111). If1s a real root appearing & times, theny = e ,y = fe
S 2t e 2kl R , &

y=re ,..,andy =1 e areall solutions.

(iv). If »= A + 14 are complex conjugate roots each appears & times,

then
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y=e cosut, y=e" sinu,
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y=rte"'cos ut, v=re" sinut,

9 ] b ] ~
y=re''cosut, y=re" sinut,

Y= ST k-l At
y=t""e" 'cosut,andy=t" " e"'sin ut,

are all solutions.
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Example: y =y =0
The characteristic equation is P =1=0"+ Do+ D — 1) =0,
which has roots » = 1, —1, 7, —i. Hence, the general solution is

-y ! v _/ v v .
y=Cie + (Che "+ (Cscost+ (ysint.

Example: % }: — 3.‘.( ) 3"‘( ) _ y'=0

T i e : w8 4 3 2 2 \: -
I'he characteristic equation 18 77~ — 3rt+3r° == (r—-1Y° =0,
which has roots 7 = 0 (a double root), and 1 (a triple root). Hence, the
general solution 1s
v 01 v 0r vt y t v, 2 =it
_\'—(1(3 + Chte + Cye + Cyte + Cstte

=C,+ Cyt+ Cie' + Cyte' + Cste’.

Example: Y443 48"+ 8y +4y=0

The characteristic equation is #* + 4r° + 87° + 8¢ +4 = (»* + 2r + 2)°
= (0, which has roots = —1 + 7 (repeated). Hence, the general solution
18

y=Cie ‘cost+ Cre 'sint+ Cste "cost+ Cyte 'sint.
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1 — 8 Find the general solution of each equation.
1. 94257=0

2. WP+ 27y=0

fad

Y =18y + 81y =0
4. YW -33"-4y=0
5. W4+32y"+256y=0

6. V454100 +100"+ 5" +y=0




