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7.2 Power Series Solutions About an Ordinary Point

A point fy is called an erdinary point of Ly = 0 if we can write the differential
equation in the form

Vit a )y +ag(t)y =0, (1)

where ag(t) and a(¢) are analytic at ¢y. If 7y 1s not an ordinary point, we call it a
singular point.

Example 1. Determine the ordinary and singular points for each of the following
differential equations:
1_!_{ | N | .
L. v" + F\ + 77) = 0.
2. (1—=t7)y" =2¢ty" + n(n + 1)y = 0, where n is an integer.
3.0y" + (sint)y + (e = 1)y =0.

» Solution.

. Here a;(t) = r’;—q is analytic except at t = =+3. The function ¢y = r-I+I 1S
analytic except at f = —1. Thus, the singular points are —3, 3, and —1. All other
points are ordinary.

2. Thisis Legendre’s equation. In standard form, we find a; (1) = % and ag(t) =

’”I”_;”‘ They are analytic except at 1 and —1. These are the singular points and

all other points are ordinary.

- 7 t_ - .
3. In standard form, a(t) = *";” and ag(t) = < r L Both of these are analytic
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Suppose ao(t) and a,(t) are analvtic at to, both of which converge for
Then there is a unique solution y(t), analvtic at tp, to the initial value

Vit a()y' +aot)y =0, y(io) =a. y'i(n) =p. (2)
‘1‘(1‘) = Z(,H(‘r - r('}”
n=0

Example 3. Use the power series method to solve
y'+y =0.

» Solution. Of course, this is a constant coefficient differential equation. Since
q(s) = s?+ 1 and B, = {cos¢,sint}, we get solution y(¢) = ¢ sint + ¢, cost. Let
us see how the power series method gives the same answer. Since the coefficients
are constant, they are analytic everywhere with infinite radius of convergence.
Theorem 2 implies that the power series solutions converge everywhere. Let v(r) =
> o2 o Cnt" be a power series about 7o = 0. Then

a0
Vi) = Zc’,,nr”_'
n=1
.
and  y'(r) = Z(’,,n(n — 1) 2
n=2

An index shift. n — n + 2. gives y"(r) = Zﬁiot’”_FgfIF —+ 2)(n + 1)t". Therefore,
the equation y” 4+ y = 0 gives

Z(c’n + Cuya(n + 2)(n + 1))t" =0,

n=>0
which implies ¢, + ¢, 42(n + 2)(n + 1) = 0, or, equivalently,

—Cn .
* — 1— -(.ll [ :C'..l..*... 3
Cn+2 7+ 20 + 1) or all n (3)
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2, it follows that even terms are determined by previous even terms and odd terms
are determined by previous odd terms. Let us consider these two cases separately.

The Even Case The Odd Case
y v — €D — — ¢
n=>0 =37 n=1 (3= 35
P .~ __ [&1] 0 T .o Ty __ ] — €
n=2  G=3F =gy n=3 =55 = 555, 7 3
4 R S | 4 — o . Ty __ILL
=4 =15 = n=>  G=35=7
| = 6 o= 6 _ @ - 0= - —dd
n=6  (g=37 =7 n="7 (9= 355 = 3
More generally, we can see that Similarly, we see that
Co C1
i n
o = (=1) : Con+1 = (—=1) .
(2n)! (2n + 1)!

Now, as we mentioned in Sect. 7.1, we can change the order of absolutely convergent
. . . . .x .
sequences without affecting the sum. Thus, let us rewrite y(r) = ) —,¢,t" in

terms of odd and even indices to get

.1'(” = Z(’EJ:IEH + Z('EH-I-II"QH-I_I

n=( n=0

N0

. i“l)”rz;s+ | Z (—1)" (]
0Ly T !

n=0 n=0

= (pCOSt + ¢y sint,
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Let y(r) =)

Thus,

A

8o
h=

2t%y" + 5ty" =2y = 0.

oCnt". Then

50
2ty = Z 2n(n = 1)c,t",

n=l
50
- ‘f _ Can i
5ty = Z:m(”r .
n=0
(.0
_211 — Z_E(I”r”.
n=I0

27y +5ty" =2y = Z(zﬁ'(n — D) +5n=2)c,t" =

n=0

Y @n=1)n+ 2",

n=0
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Find a series solution in powers of x of Airy's* equation

Vi—xy =0, —o0<x<=oo0 (13)

For this equation P(x) = 1,(}(x) = (l,and R(x) = —x:hence every point is an ordinary point.

We assume that
i o]

y= Z ,x" (16)

=l

and that the series converges in some interval |x| < p. The series for v" is given by Eq. (7): as
explained in the preceding example, we can rewrite it as

oo
y' = Zm + 2)(n + apenx". (17)

n=(

Substituting the series (16) and (17) for v and v" in Eq. (15). we obtain

oo o0 oo
Z[:r+2][ﬂ-|—1]a,,+jx”:xZaﬂr” :Zcr,,x”*'l. (18)
n=i) n=l

n=l

Next, we shift the index of summation in the series on the right side of Eq. (18) by replacing
n by n — 1 and starting the summation at 1 rather than zero. Thus we have

oo e
2-1a24 ) (4 2+ Dagpx" =) apad”.

n=1 n=l

Again, for this equation to be satisfied for all x in some mterval, the coefficients of like powers
of x must be equal; hence a; = ), and we obtain the recurrence relation

(n4+2)n+ Dayy =a,_y for n=1,23,.... (19)

Since ayyz1sgivenin terms of a,_ ., the a's are determined insteps of three. Thus a; determines
a3, which mn turn determines as, . .. ;a; determines ay, which in turn determines a, . .. ; and az
determines as, which in turn determines ag, .. .. Since a, = (I, we immediately conclude that
s T g = 1) ==,
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For the sequence ag, 43, ds.ds, ... we setn = 1,4.7,10, .. . in the recurrence relation:

iy iz i iy i
2.3 U=z 5= 5.6 s = -
= e

8.9 2.3.5.6.8.97

iz =

These results suggest the general formula

i
Qg = . nzd
2:3.5.6...3n=13m

For the sequence ay, 4. d-, @y, .. .. we setn = 2,5,8.11, ... in the recurrence relation:

iT1 74 if1 a7 i
iy = ——, i = = . i = =
T3 6.7 3.4.6.7 e

In general, we have

a = o n=4
SR P BT NYE TR R T =
Thus the general solution of Airy’s equation is
N e N o o £ )
S IR R T T T Y P FYE T R
x x’ xin+
+oay [x+ + ot 4o
][ 3.4 3.4.6.7 3.4 (3ry3n 4+ 1) ]

PROBLEMS  1n each of Problems 1 through 12, determine the general solution of the given differential
=== equation that is valid in any interval not including the singular point.

[

Loxy" 4 duy 42y =00 x4+ 13"+ 3+ Dy + 075y =0

3oy 4y =1 40y 43y + 5y =0
5oy —xy 4y =0 b r= 1"+ 8x -1y’ + 12y =10
1 ¥y by -y =0 8 2y —dry' 46y =0

9. x2Sy 49y =00 10, (x=2%" 4 5x = 2y + 8y =10
1L 2%y 4+ 2xy +dy =00 12 7y —duy' + 4y =0




