Triple Integrals

The notation for the general triple integrals is,

$$
\iiint_{E} f(x, y, z) d V
$$

Let's start simple by integrating over the box,

$$
B=[a, b] \times[c, d] \times[r, s]
$$

Note that when using this notation we list the x 's first, the y 's second and the z 's third.
: The triple integral in this case is,

$$
\iiint_{B} f(x, y, z) d V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

Example 1 Evaluate the following integral.

$$
\iiint_{B} 8 x y z d V, \quad B=[2,3] \times[1,2] \times[0,1]
$$

Solution

Just to make the point that order doesn't matter let's use a different order from that listed above. We'll do the integral in the following order.

$$
\begin{aligned}
\iiint_{B} 8 x y z d V & =\int_{1}^{2} \int_{2}^{3} \int_{0}^{1} 8 x y z d z d x d y \\
& =\left.\int_{1}^{2} \int_{2}^{3} 4 x y z^{2}\right|_{0} ^{1} d x d y \\
& =\int_{1}^{2} \int_{2}^{3} 4 x y d x d y \\
& =\left.\int_{1}^{2} 2 x^{2} y\right|_{2} ^{3} d y \\
& =\int_{1}^{2} 10 y d y=15
\end{aligned}
$$

Fact
-
The volume of the three-dimensional region E is given by the integral,

$$
V=\iiint_{E}^{D} d V
$$

Let's now move on the more general three-dimensional regions. We have three different possibilities for a general region. Here is a sketch of the first possibility.

In this case we will evaluate the triple integral as follows,

$$
\iiint_{V} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A
$$

Example 2 Evaluate $\iiint_{V:} 2 x d V$ where E is the region under the plane $2 x+3 y+z=6$ that lies in the first octant.

Solution

So D will be the triangle with vertices at $(0,0),(3,0)$, and $(0,2)$. Here is a
sketch of D.

We can integrate the double integral over D using either of the following two sets of inequalit

$$
\begin{array}{rl}
0 \leq x \leq 3 \\
0 \leq y \leq-\frac{2}{3} x+2 & 0 \leq x \leq-\frac{3}{2} y+3 \\
\iiint_{V} 2 x d V & =\iint_{D}\left[\int_{0}^{6-2 x-3 y} 2 x d z\right] d A \\
& =\left.\iint_{D} 2 x z\right|_{0} ^{6-2 x-3 y} d A \\
& =\int_{0}^{3} \int_{0}^{-\frac{2}{3} x+2} 2 x(6-2 x-3 y) d y d x \\
& =\left.\int_{0}^{3}\left(12 x y-4 x^{2} y-3 x y^{2}\right)\right|_{0} ^{-\frac{2}{3} x+2} d x \\
& =\int_{0}^{3} \frac{4}{3} x^{3}-8 x^{2}+12 x d x \\
& =\left.\left(\frac{1}{3} x^{4}-\frac{8}{3} x^{3}+6 x^{2}\right)\right|_{0} ^{3} \\
\text { multiple Integral } & =9
\end{array}
$$

Example 3 Determine the volume of the region that lies behind the plane $x+y+z=8$ and in front of the region in the $y z$-plane that is bounded by $z=\frac{3}{2} \sqrt{y}$ and $z=\frac{3}{4} y$.

Here are the limits for each of the variables.

$$
\begin{aligned}
& 0 \leq y \leq 4 \\
& \frac{3}{4} y \leq z \leq \frac{3}{2} \sqrt{y} \\
& 0 \leq x \leq 8-y-z \\
V= & \iiint_{V} d V=\iint\left[\int_{0}^{8-y-z} d x\right] d A \\
= & \int_{0}^{4} \int_{3 y / 4}^{3 \sqrt{y} / 2} 8-y-z d z d y \\
= & \left.\int_{0}^{4}\left(8 z-y z-\frac{1}{2} z^{2}\right)\right|_{\frac{3 y}{4}} ^{\frac{3 \sqrt{y}}{2}} d y \\
= & \int_{0}^{4} 12 y^{\frac{1}{2}}-\frac{57}{8} y-\frac{3}{2} y^{\frac{3}{2}}+\frac{33}{32} y^{2} d y \\
= & \left.\left(8 y^{\frac{3}{2}}-\frac{57}{16} y^{2}-\frac{3}{5} y^{\frac{5}{2}}+\frac{11}{32} y^{3}\right)\right|_{0} ^{4}=\frac{49}{5}
\end{aligned}
$$

Example 4 Evaluate $\iiint_{V} \sqrt{3 x^{2}+3 z^{2}} d V$ where E is the solid bounded by $y=2 x^{2}+2 z^{2}$ and the plane $y=8$.

Solution Here is a sketch of the solid E.

$$
\begin{aligned}
& 2 x^{2}+2 z^{2}=8 \Rightarrow \quad x^{2}+z^{2}=4 \\
& x=r \cos \theta z=r \sin \theta \\
& x^{2}+z^{2}=r^{2} \\
& 2 x^{2}+2 z^{2} \leq y \leq 8 \\
& 0 \leq r \leq 2 \\
& 0 \leq \theta \leq 2 \pi
\end{aligned} \quad \begin{aligned}
& \iiint_{V} \sqrt{3 x^{2}+3 z^{2}} d V=\iint_{D}\left[\int_{2 x^{2}+2 z^{2}}^{8} \sqrt{3 x^{2}+3 z^{2}} d y\right] d A \\
&=\left.\iint_{D}\left(y \sqrt{3 x^{2}+3 z^{2}}\right)\right|_{2 x^{2}+2 z^{2}} ^{8} d A \\
&=\iint_{D} \sqrt{3\left(x^{2}+z^{2}\right)\left(8-\left(2 x^{2}+2 z^{2}\right)\right) d A} \\
& \sqrt{3\left(x^{2}+z^{2}\right)\left(8-\left(2 x^{2}+2 z^{2}\right)\right)}=\sqrt{3 r^{2}}\left(8-2 r^{2}\right) \\
&=\sqrt{3} r\left(8-2 r^{2}\right) \\
& \iiint_{B} \sqrt{3 x^{2}+3 z^{2}} d V=\iint_{D} \sqrt{3}\left(8 r-2 r^{3}\right) \\
&=\sqrt{3} \int_{0}^{2 \pi} \int_{0}^{2}\left(8 r-2 r^{3}\right) d A \\
&=\sqrt{3} \int_{0}^{2 \pi}\left(\frac{8}{3} r^{3}-\frac{2}{5} r^{5}\right) r d r d \theta \\
&=\sqrt{3} \int_{0}^{2 \pi} \frac{128}{15} d \theta=\frac{256 \sqrt{3} \pi}{15} \\
& \text { multiple Integral } \mathbf{2 4} \text { of } \mathbf{3 9}
\end{aligned}
$$

