Dr. Sattar Rajab Majeed

(Analytical Colculation)

MSc. Semester 2

4
 Methods of Preparation Solutions and Chemical Calculations in Volumetric Titration Reactions.

4.1 Standard and Standardised Solutions .

Standard solution is the solution of accurately known concentration, such as $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}$, 0.1 N Borax ($0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} .10 \mathrm{H}_{2} \mathrm{O}$), $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and 0.1 N or 0.1 M NaCl solutions.

These standard solutions are prepared from the primary standard materials by direct weighing.

Standardised solution is a solution of approximate concentration which can be known exactly by standardising it with standard solution. Such as preparation of approximately 0.1 M or $0.1 \mathbf{N ~ H C l}$ and standardising it with standard solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ or Borax. Standard solutions of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and Borax can be prepared from the pure solid materials by weighing.

When the standardised solution is prepared and standardised, its properties become identical to the properties of standard solution.

4.2 Characteristics of standard solution:

1- Its concentration remains constant for months or years, or at least within the period of titration.

2- It rapidly reacts with the analyte and the reaction is complete within the period of the experiment.

3- Its reaction with the analyte can be expressed as balanced equation in order to get the exact weight of the analyte.

4- A sudden change of the reaction should occur in order to identify the equivalence point of the reaction by suitable chemical indicator.

Examples: solutions of oxalic acid (0.1 N), sodium carbonate (0.1 N), sodium chloride (0.1 N) and borax (0.1 N).

4.3 Primary standard materials.

It is a material or chemical of high purity and characterised by the following requirements:

1- Its purity should not be less than $\mathbf{9 9 . 5 \%}$, otherwise purification methods should be available to confirm its purity.

2- It should be stable and not be hydrated or efflorescent.
3- It can be easily obtained and not expensive.
4- It is preferred to have high equivalent weight. For example, if we compare the equivalent weights of $\mathrm{Na}_{2} \mathrm{CO}_{3}(53)$ and borax (191), we find that the equivalent wt. of borax is four times larger than sodium carbonate. If we want to prepare 0.1 N of both solutions we should use: $1.325 \mathrm{~g} \mathrm{Na} 2_{2} \mathrm{CO}_{3}$ and 4.775 g borax.

If an error of 0.02 g is occurs in weighing, therefore the percentages of error equal:

$$
\frac{0.02}{1.325} \times 100=1.6 \% \text { and } \frac{0.02}{4.775} \times 100=0.4 \% \quad \text { respectively } .
$$

Therefore, the percentage of error with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is four times higher than borax. As the weight is increased the percentage of error is decreased.

5- The primary standard material is easily soluble in water or the applicable solvent. Examples: oxalic acid, sodium carbonate, borax, sodium chloride and zinc sulphate hepta hydrate.

4.4 Methods of preparation of solutions.

4.4.1 From solid materials.

The solid material may be primary standard material, therefore, the prepared solution is standard. If the solid material is not primary standard, the prepared solution is not standard (has an approximate concentration). $\operatorname{Ex}(1)$: Show by calculation how could you prepare 250 ml of 0.1 N $\mathrm{Na}_{2} \mathrm{CO}_{3}$ from the solid primary standard of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

The solution:
Eq. wt. on $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{2 \times 23+12+3 \times 16}{2}=\frac{106}{2}=53$
Number of equivalents of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ Number of equivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in solution.

Also:
Number of milliequivalents of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ Number of milliequivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in solution.
Number of equivalents of solid $\mathrm{Na}_{2} \mathbf{C O}_{3}=\frac{w t .}{\text { its eq. wt. }}$
Number of milliequivalents of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{\mathrm{wt} .}{\text { its eq. wt. }} \times 1000$
Number of milliequivalents of $\mathrm{Na}_{2} \mathbf{C O}_{3}$ in solution= volume of solution $(\mathbf{m l}) \times \operatorname{Normality}\left(\frac{\mathbf{m e q}}{\mathbf{m l}}\right)$

Number of meqts of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ Number of meqts of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in solution.
$\frac{\text { wt of } \mathrm{Na}_{2} \mathrm{CO}_{3}}{\text { its eq. wt. }} \times 1000=$ volume of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $\times \mathrm{N}$

$$
\begin{aligned}
& \frac{w t \text { of } \mathrm{Na}_{2} \mathrm{CO}_{3}}{53(\mathrm{~g} / \mathrm{meq})}=250(\mathrm{ml}) \times 0.1(\mathrm{meq} / \mathrm{ml}) \\
& \text { wt of } \mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{53 \times 0.1 \times 250}{1000}=1.325 \mathrm{~g} / 250 \mathrm{ml} .
\end{aligned}
$$

Therefore, 1.325 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is exactly weighed by sensitive balance and dissolved in 250 ml of solution in $\mathbf{2 5 0} \mathrm{ml}$ size volumetric flask to get $\mathbf{0 . 1}$ N of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. This solution is a standard solution which is prepared from high purity of solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

Ex(2): Show by calculation how could you prepare 2 litres of 0.2 M NaOH solution from solid $\mathbf{N a O H}$.

The solution:
Mol. wt. of $\mathbf{N a O H}=\mathbf{2 3 + 1 6 + 1}=40$
Number of moles of solid $\mathbf{N a O H}=$ Number of moles of $\mathbf{N a O H}$ in solution. Number of millimoles of solid $\mathrm{NaOH}=\frac{\text { wt. of } \mathbf{N a O H}}{40} \times 1000$

Number of millimoles of $\mathbf{N a O H}$ in solution $=$ volume of sol ution $(\mathbf{m l}) \times \mathbf{M}(\mathbf{m m o l} / \mathrm{ml})$
$\therefore \quad \frac{\text { wt. of } \mathrm{NaOH}}{40} \times 1000=2000 \times 0.2$
wt. of $\mathrm{NaOH}=\frac{40 \times 0.2 \times 2000}{1000}=16 \mathrm{~g}$
Therefore, 16 g of NaOH is weighed by usual balance and dissolved in 2 litres of solution to get $\mathbf{0 . 2} \mathbf{M}$. This solution is not standard since $\mathbf{N a O H}$ is not primary standard material because:
a) It absorbs water from atmosphere and dissolves in it.
b) It reacts with CO_{2} from atmosphere and forms thin layer of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ surrounding $\mathbf{N a O H}$. Thus $\mathbf{N a O H}$ is not pure.

$$
2 \mathrm{NaOH}+\mathrm{CO}_{2} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

Therefore, this solution is standardised with standard solution of an acid such as standard oxalic acid solution using suitable indicator.

4.4.2 Preparation of dilute solutions from concentrated solutions which are commercially available.

The concentrated solutions are always acids or bases kept in bottles carrying some information such as :percent (w/w), purity, density of the solution or its specific gravity and the formula of the solute and its formula weight. From this information, one can calculate the concentration of solution which is an approximate because the information on the bottle approximate.

In formal, normal and molar concentrations we are dealing with weight of solute in litre of solution.

Wt. of litre of concentrated solution $=$ volume of solution \times its density .
Wt. of solute in litre of solution $=$ volume of solution \times density \times percentage of solute.
$\therefore \quad$ Normality of concentrated solution $=\frac{w t . \text { of solute in litre }}{\text { eq. wt. of solute }}$
Therefore, the normality of concd. solution $=\frac{1000 \times \text { density } \times \text { percentage }}{\text { eq. } w t . \text { of solute }}$
From this concentration, we can calculate the volume of concentrated solution that when is diluted to the wanted volume, it gives the required concentration. This concentration is also approximate since we use approximate figures.

Number of milliequivalents of solution before dilution $=$
Number of milliequivalents of solution after dilution.
$\left(\mathbf{N}_{1} \mathbf{V}_{1}\right)_{\text {before dilution }}=\left(\mathbf{N}_{2} \mathbf{V}_{2}\right)_{\text {after dilution }}$.
V_{1} is the wanted volume of concentrated solution when is diluted to \mathbf{V}_{2} it gives \mathbf{N}_{2}.

Ex(1): Show by calculation how could you prepare 500 ml of $\mathbf{0 . 1} \mathbf{N ~ H}_{\mathbf{2}} \mathbf{S O}_{4}$ from its concentrated solution has density of $1.84 \mathrm{~g} / \mathrm{ml}$ and percentage of acid equals $\mathbf{9 8 \%}$ (w/w).

The solution:
Eq. wt. of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{2 \times 1+32+4 \times 16}{2}=\frac{98}{2}=49$
Wt. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in litre of solution $=1000 \times 1.84 \times 0.98$
Normality of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution $=\frac{1000 \times 1.84 \times 0.98}{49}=36.8 \mathrm{eq} / \mathrm{lit}$ Or meq/ml
$\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \quad \longrightarrow \quad 36.8 \times \mathrm{V}_{1}=500 \times 0.1 \quad \longrightarrow \quad \mathrm{~V}_{1}=\frac{500 \times 0.1}{36.8}=1.4 \mathrm{ml}$
Thus, 1.4 ml of concd. sulphuric acid is measured by a graduated cylinder and transferred into a beaker containing 300 ml distilled water with stirring and cooling and then transferred to volumetric flask of 500 ml size. The solution is diluted to the mark with distilled water and stirred vigorously to get homogeneous solution. The same steps are followed when formal and molar concentrations are required with employing formula weight and molecular weight.

Ex(2): Show by calculation how could you prepare 500 ml of 2 M ammonia solution from concentrated solution which has specific gravity of 0.9 and percentage of ammonia $=27 \%$.

The solution:
Molarity of concentrated ammonia solution $=\frac{1000 \times 0.9 \times 0.27}{17}$
$=14.5 \mathrm{~m} \mathrm{~mol} / \mathrm{ml}$.
$\mathbf{M}_{1} \mathbf{V}_{1}=\mathbf{M}_{2} \mathbf{V}_{\mathbf{2}}$

$$
14.5 \times V_{1}=2 \times 500 \quad \therefore \quad V_{1}=\frac{2 \times 500}{14.5}=70 \mathrm{ml} .
$$

Therefore, 70 ml of concentrated ammonia solution is measured by suitable cylinder and transferred to 500 ml size volumetric flask and diluted to the mark with distilled water.

4.4.3 Preparation of dilute solutions from two different concentrated solutions.

Ex(1): Show by calculation how could you prepare a solution of $\mathbf{8 0 \%}$ $(w / w) \mathrm{H}_{2} \mathrm{SO}_{4}$ from two solutions of Sulphuric acid which have percentages of $96 \%(w / w)$ and $75 \%(w / w)$.

The solution:

Crossing arrangement is used for the solution of this example since it is simple and ease for calculation.

In this example, the lower figure is subtracted from the larger figure irrespective of the mark as shown in the left diagram. $96-80=16,80-75=5$

As the percentage is given (w/w), therefore, 5 weighing units from $\mathbf{9 6 \%}$ acid and 16 weighing units from $\mathbf{7 5 \%}$ are mixed to get $\mathbf{8 0 \%}$. We can take 10 or 50 from 96% and 32 or 160 from $\mathbf{7 5 \%}$ on condition that the ratio stays as $\frac{5}{16}$.
$\mathbf{E x}(2)$: Show by calculation how could you prepare a litre of sulphuric acid solution which has percentage of $50 \%(w / w)$ and density of 1.395 g / ml from two solutions of sulphuric acid which have percentages $\mathbf{9 5 \%}(\mathbf{w} / \mathbf{w})$ and $\mathbf{2 5 \%}(\mathbf{w} / \mathbf{w})$.

The solution:

Therefore, 25 g of $\mathbf{9 5 \%}$ acid is mixed with $\mathbf{4 5 g}$ of $\mathbf{2 5 \%}$ acid to get 70 g of 50% of acid. But the wanted solution is litre $=1000 \mathrm{ml}$

Wt. of litre of the prepared solution $=1000 \times 1.395=1395 \mathrm{~g}$
Therefore, to get litre of $\mathbf{5 0 \%}$ of sulphuric acid from two solutions by weighing:
$25+45=70$ total weight.
$\frac{1395 \times 25}{70}=498 \mathrm{~g}$ from 95% acid
$\frac{1395 \times 45}{70}=897$ g from 25% acid
Total weight $=498+897=1395 \mathrm{~g}$.

Ex(3): How could you prepare a solution of $\mathbf{4 0 \%}$ Nitric acid from $\mathbf{9 6 \%}$ nitric acid, if its density equals $1.08 \mathrm{~g} / \mathrm{ml}$ and density of water $=1 \mathrm{~g} / \mathrm{ml}$?

The solution:

96-40 $=56$ acid, $40-00=40$ water.
Therefore, 40 g of acid is mixed with 56 g of water to get 40% nitric acid.

$$
\frac{40}{1.08}=37 \mathrm{ml} \text { of acid }, \quad \frac{40}{1}=40 \mathrm{ml} \text { of water }
$$

Therefore, 37 ml of acid is mixed with 56 ml of water to get 40% of acid. Treatment with volumes is simpler than treatment with weight.

Ex(4): How many grams of water should be added to 100 g of ammonia solution which has percentage of $\mathbf{2 5 \%}$ in order to get a solution that has percentage of 5% ?

The solution:

25-5 $=\mathbf{2 0}$ ammonia, 5-00 $=5$ water. Therefore, 5 g of ammonia is mixed with 20 g of water to get 5% of ammonia solution.

But the required weight of water is wanted to be added to 100 ml of ammonia, thus:
$\frac{100 \times 20}{5}=400 \mathrm{~g}$ of water should be added to 100 ml of ammonia to get 5% ammonia.

4.5 Chemical Calculations of Volumetric Titrations.

Chemical calculations which associate with titration process in volumetric analysis are very significant since they illustrate the idea about the accuracy of titration data which refer to the precision of measurements that lead to accurate results.

The reaction in volumetric analysis should be rapid and complete. The reactions are expressed in balanced equations and from these reactions one can know the ratio of reactants since they involve equivalents of the reactants at equivalence point.

Normal concentration gives simple and rapid calculations because they involve equivalent amounts of the reactants.

Molar concentrations require some attention and recognition.

For example, if $\mathbf{N a O H}$ solution is titrated with $\mathbf{H C l}$ solution, there is no difference in using normality or molarity because the reaction is performed in 1:1 ratio between NaOH and HCl

$$
\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

But the case is different in titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution with $\mathbf{H C l}$ solution.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Where two moles of HCl react with one mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. This means that the strength of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is twice of $\mathbf{H C l}$. If the molar concentration is used, a precaution should be given to the factor 2 in HCl .

$$
(\mathbf{V} \times \mathbf{M})_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=(\mathbf{V} \times \mathbf{M})_{\mathbf{H C l}}
$$

This equality is incorrect if molar concentration is used. Therefore, a factor of $\mathbf{2}$ should be used at the left side of the above reaction in order to express correctly the reaction between $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and HCl .
$2(\mathrm{~V} \times \mathrm{M}) \underset{\mathrm{Na}_{2} \mathrm{CO}_{3}}{ }=(\mathrm{V} \times \mathrm{M})$
But if the normal concentration is employed for both solutions, the following reaction is correct because the reaction is performed on the basis of equivalents or milliequivalents.
$(\mathrm{V} \times \mathrm{N}) \underset{\mathrm{Na}_{2} \mathrm{CO}_{3}}{=(\mathrm{V} \times \mathrm{N})}{ }_{\mathrm{HCl}}$
The same treatment is considered in precipitation, oxidation-reduction and complex formation titrations.

4.5.1 Calculations of acid-base titrations or neutralization titrations (one of the products is water).

$\mathrm{Ex}(1)$: Calculate the weight of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 5 litres if 25 ml of this solution requires 22.5 ml of 0.095 N KOH .

The solution:
Eq. wt. of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{2 \times 1+32+4 \times 16}{2}=\frac{98}{2}=49$
No. of meqts of $\mathrm{KOH}=$ No. of meqts of $\mathrm{H}_{2} \mathrm{SO}_{4}$
$(22.5 \times \mathbf{0 . 0 9 5})=(\mathbf{N} \times 25)$

$$
\mathrm{KOH} \quad \mathrm{H}_{2} \mathrm{SO}_{4}
$$

$\mathrm{N}_{\mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{22.5 \times 0.095}{25}=0.0855 \mathrm{eq} / \mathrm{lit}$
Wt. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 5 litres $=\mathrm{N} \times$ eq. wt. $\times \frac{5}{1}$

$$
=0.0855 \times 49 \times 5=20.9475 \mathrm{~g}
$$

$\operatorname{Ex}(2):$ A solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ contains 795 mg per litre of solution. Calculate the normality of this solution. What is the volume of $\mathrm{H}_{2} \mathrm{SO}_{4}$ of 0.1 N that equivalent to 10 ml of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution.

The solution:
$\mathrm{N}=\frac{0.795}{53}=0.015 \mathrm{meq} / \mathrm{ml}$ normality of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$(\mathrm{V} \times 0.1)_{\mathrm{H}_{2} \mathrm{SO}_{4}}^{=}=(0.015 \times 10){ }_{\mathrm{Na}_{2} \mathrm{CO}_{3}}$
$\mathrm{V}_{\mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{0.015 \times 10}{0.1}=1.5 \mathrm{ml} \mathrm{H}_{2} \mathrm{SO}_{4}$ required to equivalent10 ml of $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3}$
$\mathrm{Ex}(3)$: 30 g of $\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{\mathbf{4}} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}$ is dissolved in distilled water and completed to litre. 40 ml of this solution is titrated with KOH which required 20 ml . Calculate the normality of KOH .

The solution:
Eq. wt. $\mathrm{KHC}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}=\frac{39+3 \times 1+4 \times 12+8 \times 16+2 \times 18}{3}$

$$
=\frac{254}{3}=84.67
$$

N of this solution $=\frac{30}{84.67}=\mathbf{0 . 3 5 4 3} \mathrm{eq} / \mathrm{lit}$ or $\mathrm{meq} / \mathrm{ml}$.
meqts of this acidic solution $=$ meqts of KOH
$\underset{\text { (40×0.3543) }}{\text { acidic solution }}=(20 \times \mathrm{N}) \underset{\mathrm{KOH}}{ } \longrightarrow \mathrm{NOH}=\frac{40 \times 0.3543}{20}=0.7086 \mathrm{meq} / \mathrm{ml}$.
$\operatorname{Ex}(4): 10 \mathrm{ml}$ of vinegar has density of $1.055 \mathrm{~g} / \mathrm{ml}$ and requires $\mathbf{3 9 . 8 2} \mathbf{~ m l}$ of 0.225 N of a base to reach equivalence point. Calculate the percentage of acetic acid in vinegar (w/w).

The solution:
Wt. of vinegar sample $=$ volume \times density

$$
=10 \times 1.055=10.55 \mathrm{~g}
$$

No. of meqts. of vinegar solution $=$ No. of meqts. of base.
$0.255 \times 39.82=\mathrm{N}_{\mathrm{CH}_{3} \mathrm{COOH}} \times 10$
$\mathrm{N}_{\mathrm{CH}_{3} \mathrm{COOH}}=\frac{0.255 \times 39.82}{10}=\begin{array}{r}1.01541 \mathrm{eq} / \mathrm{lit} \\ \text { or } \mathrm{meq} / \mathrm{ml}\end{array}$
wt. of acetic acid in vigenar $=\mathbf{N} \times$ eq. wt. $\times \frac{10}{1000}$
Eq.wt of $\mathrm{CH}_{3} \mathrm{COOH}=\frac{2 \times 12+2 \times 16+4 \times 1}{1}=\frac{60}{1}=60$
$=1.01541 \times 60 \times \frac{10}{1000} \longrightarrow=0.6092 \mathrm{~g}$
$\%$ of CH 3 COOH in vinegar $=\frac{0.6092}{10.55} \times 100=5.77 \%(\mathrm{w} / \mathrm{w})$
$\operatorname{Ex}(5): 0.3542 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was dissolved in water and titrated with HCl which consumed 30.32 ml of the acid. Calculate the normality of HCl solution.

The solution:

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

1 mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ requires two moles of HCl .
$\therefore 2 \times$ No. of mmols of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ No. of mmols of $\mathbf{H C l}$.
$2 \times \frac{0.3542}{106} \times 1000=M_{H C l} \times 30.32$
$M_{H C l}=2.21 \mathbf{m o l} /$ lit or $\mathbf{m m o l} / \mathbf{m l}$

4.5.2 Calculations of precipitation titrations.

In precipitation titrations, one of the products is slightly soluble salt called precipitate.
$\operatorname{Ex}(1)$: Calculate the percentage of silver in silver alloy if a solution prepared by dissolving 0.3 g of the alloy requires 23.80 ml of 0.1 N
$\mathbf{N H}_{4}$ SCN. $(\mathbf{A g}=108)$

The solution:
No. of meqts. of $\mathrm{Ag}^{+}=\mathrm{No}$. of meqts of SCN^{-}
$\frac{\text { wt. of silver }}{\text { its eq. wt. }} \times 1000=(\mathrm{V} \times \underset{\mathrm{NCN}}{\mathrm{N}}) \longrightarrow \quad \longrightarrow \quad \frac{\text { wt. of silver }}{108} \times 1000=23.80 \times 0.1$
wt. of silver $=\frac{108 \times 0.1 \times 23.80}{1000}=0.257 \mathrm{~g}$
$\therefore \% \mathrm{Ag}=\frac{0.257}{0.3} \times 100=85.67 \%$
$\operatorname{Ex}(2)$: Find the weight of BaCl_{2} in $\mathbf{2 5 0} \mathbf{~ m l}$ of solution where $\mathbf{4 0} \mathbf{~ m l}$ in excess of $0.102 \mathbf{N ~ A g N O}_{3}$ was added to 25 ml of BaCl_{2}. The excess of AgNO_{3} solution was titrated with $0.098 \mathrm{~N} \mathrm{SCN}^{-}$.

The solution:

$$
\begin{gathered}
\mathrm{BaCl}_{2}+2 \mathrm{AgNO}_{3} \longrightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{AgCl} \\
\mathrm{AgNO}_{3}+\mathrm{SCN}^{-} \longrightarrow \mathrm{AgSCN}+\mathrm{NO}_{3}^{-}
\end{gathered}
$$

No. of meqts of $\mathrm{AgNO}_{3}=$ No. of meqts of $\mathrm{SCN}^{-}+$No. of meqts of BaCl_{2}.

$$
(0.102 \times 40)=(\mathrm{N} \times 25) \quad+(0.098 \times 15)
$$

$$
\begin{array}{lll}
\mathrm{AgNO}_{3} & \mathrm{BaCl}_{2} & \mathrm{SCN}
\end{array}
$$

$1.47+25 \mathrm{~N}=4.08$
$\mathrm{N}=\frac{\mathbf{2 . 6 1}}{\mathbf{2 5}}=\mathbf{0 . 1 0 4 4} \mathbf{~ m e q} / \mathbf{m l}$ normality of $\mathrm{BaCl}_{\mathbf{2}}$ solution.
Wt. of BaCl_{2} in $250 \mathrm{ml}=\mathrm{N}_{\mathrm{BaCl}_{2}} \times$ its eq. wt. $\times \frac{\mathbf{2 5 0}}{\mathbf{1 0 0 0}}$
$=0.1044 \times 104.17 \times \frac{\mathbf{2 5 0}}{\mathbf{1 0 0 0}} \longrightarrow=2.72 \mathrm{~g} \mathrm{BaCl}_{2} / 250 \mathrm{ml}$.

4.5.3 Calculation of oxidation-reduction titrations.

These titrations involve the reactions between oxidant and reductant which subject transferring of electrons from reductant to oxidant.
$\operatorname{Ex}(1)$: A sample of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ weighs 0.2734 g is dissolved in water acidified with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ and titrated at $70^{\circ} \mathrm{C}$ with KMnO_{4} solution, which requires 42.68 ml . The titration exceeds the equivalence point and the excess of KMnO_{4} is back titrated with 0.1024 N oxalic acid which requires 1.46 ml . Calculate the normality of KMnO_{4} solution.

The solution:

Eq. wt. of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=\frac{2 \times 23+2 \times 12+4 \times 16}{2}=67$

No. of meqts of $\mathrm{KMnO}_{4}=\mathrm{No}$. of meqts of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+$ No. of meqts of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
$\underset{\mathrm{KMnO}_{4}}{\mathrm{~N}} \underset{\text { 2 }}{ } \times \mathbf{6 8}=\frac{0.2734}{67} \times 1000+1.46 \times 0.1024$
$\underset{\mathrm{KMnO}}{4} \mathbf{~}=\frac{\mathbf{4 2 . 2 3 0 1}}{\mathbf{4 2 . 6 8}}=\mathbf{0 . 0 9 9 1 1} \mathrm{meq} / \mathrm{ml}$ or $\mathrm{eq} / \mathrm{lit}$

Ex(2): A sample of Iron ore weighs 0.6038 g was dissolved in an acid and Fe^{3+} is reduced to Fe^{2+} and titrated with $0.1073 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ which requires 38.42 ml . Calculate the percentage of Fe in the sample and express the percentage as $\mathrm{FeO}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{3} \mathrm{O}_{4}$.

Atomic wt. of $\mathbf{F e}=56$.

The solution:

No. of meqts of $\mathrm{Fe}^{2+}=$ No. of meqts of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

$$
\frac{\text { wt. of } \mathrm{Fe}}{\text { its eq. wt. }} \times 1000=\left(\mathrm{V} \times \underset{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{\mathrm{~N})}\right.
$$

$\frac{\text { wt. of } \mathrm{Fe}}{56} \times 1000=38.42 \times 0.1073 \rightarrow$ wt. of $\mathrm{Fe}=\frac{56 \times 38.42 \times 0.1073}{1000}=\mathbf{0 . 2 3 1 \mathrm { g }}$
$\%$ of $\mathrm{Fe}=\frac{0.231}{0.6038} \times 100=38.23 \%$
$\%$ as $\mathrm{FeO}=38.23 \times \frac{\mathrm{FeO}}{\mathrm{Fe}}=38.23 \times \frac{72}{56}=49.15 \%$
$\%$ as $\mathrm{Fe}_{2} \mathrm{O}_{3}=38.23 \times \frac{\mathrm{Fe}_{2} \mathrm{O}_{3}}{2 \mathrm{Fe}}=38.23 \times \frac{160}{112}=54.61 \%$
$\%$ as $\mathrm{Fe}_{3} \mathrm{O}_{4}=38.23 \times \frac{\mathrm{Fe}_{3} \mathrm{O}_{4}}{3 \mathrm{Fe}}=38.23 \times \frac{232}{168}=52.71 \%$

4.5.4 Calculations in complex formation titrations

In these titrations a stable complex is formed which is exploited in determination of most metal ions with EDTA as a ligand.
$\operatorname{Ex}(1)$: 25.42 ml of $0.045 \mathrm{M} \mathrm{AgNO}_{3}$ is required to titrate a sample of impure KCN weighed 0.3123 g according to the following reaction: $\mathbf{A g}^{+}+\mathbf{2 C N}{ }^{-} \mathbf{2} \mathbf{A g}(\mathbf{C N}) \longrightarrow-\cdots---{ }^{-}$complex ion

Calculate the percentage of KCN in the sample.
The solution:
$2 \times$ No. of $\mathbf{~ m m o l s}$ of $\mathrm{AgNO}_{3}=$ No. of mmols of KCN
$2 \times 0.045 \times 25.42=\frac{\text { wt. of KCN }}{\text { its mol. wt. }} \times 1000=\frac{\text { wt. of KCN }}{65} \times 1000$
wt. of $\mathrm{KCN}=\frac{65 \times 2 \times 0.045 \times 25.42}{1000}=0.1488 \mathrm{~g}$
$\% \mathrm{KCN}=\frac{0.1488}{0.3123} \times 100=47.65 \%$
$\operatorname{Ex}(2)$: 25 ml of Ni^{2+} solution requires 0.521 g of KCN according to the following reaction:
$\mathbf{N i}^{\mathbf{2 +}}+\mathbf{4 C N}{ }^{-\mathbf{2}} \mathbf{4} \mathbf{N i}(\mathbf{C N}) \longrightarrow-\cdots---$ complex ion
Calculate the molarity of $\mathbf{N i}^{\mathbf{2 +}}$ solution.
The solution:
1 mol of Ni^{2+} requires 4 mols of KCN in order to get the above reaction. The strength of $\mathbf{N i}^{\mathbf{2 +}}$ is four times greater than KCN .
$\therefore 4 \times$ No. of mmols of $\mathbf{N i}^{\mathbf{2 +}}=$ No. of mmols of KCN.
$4 \times 25 \times \mathrm{M}_{\mathrm{Ni}^{2+}}=\frac{\text { wt. of KCN }}{\text { its Mol. wt. }} \times 1000 \longrightarrow 4 \times 25 \times \mathrm{M}_{\mathrm{Ni}^{2+}}=\frac{0.521}{65} \times 1000$

$$
\mathrm{M}_{\mathrm{Ni}^{2+}}=\frac{0.521 \times 1000}{4 \times 25 \times 65}=0.08 \mathrm{~mol} / \mathrm{lit}
$$

$\operatorname{Ex}(3)$: 3 g of EDTA (disodium) is dissolved in one litre. Calculate the volume of $0.05 \mathrm{M} \mathrm{Mg}{ }^{2+}$ solution required to react with 25 ml of EDTA solution.

The solution:
The ratio of reaction is $1 \mathbf{M g}^{\mathbf{2 +}}: \mathbf{1}$ EDTA
EDTA is ethylenediamine tetra acetic acid abbreviated as $\mathbf{N a}_{2} \mathbf{H}_{2} \mathbf{Y} .2 \mathbf{H}_{2} \mathrm{O}$ which is disodium salt. Also, it is abbreviated as EDTA and has the following formula.

Mol. wt. of EDTA $=\mathbf{2} \times 23+8 \times 16+14 \times 2+10 \times 12+2 \times 18+14 \times 1=372$
Molarity of EDTA $=\frac{\text { wt. per litre }}{\text { its Mol. wt. }}=\frac{3}{372}=0.0081 \mathrm{~mol} / \mathrm{lit}$.
$\mathbf{M g}^{2+}$ reacts with EDTA in the ratio $1: 1 \sim \sim \mathbf{M g}^{2+}+$ EDTA \longrightarrow Mg-EDTA
No. of mmols of EDTA $=$ No. of mmols of $\mathbf{M g}^{\mathbf{2 +}}$
$(25 \times 0.0081)=(\mathrm{V} \times 0.05)$
EDTA $\mathbf{M g}^{2+}$
$\mathrm{V}_{\mathrm{Mg}^{2+}}=\frac{25 \times 0.0081}{0.05}=4.05 \mathrm{ml}$

4.6 Problems:

1- Show by calculations how could you prepare the following solutions:
a) $\mathbf{5 2 5} \mathbf{~ m l}$ of 0.4 F BaCl 2 from solid $\mathrm{BaCl}_{2} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}$.
b) $\mathbf{2 . 3 0}$ litres of $\mathbf{0 . 2} \mathbf{~ M ~ K}{ }^{+}$from solid $\mathrm{K}_{2} \mathrm{SO}_{4}$.
c) $\mathbf{1 0 0} \mathbf{~ m l ~ o f ~} 0.1 \mathrm{~F} \mathrm{AgNO}_{3}$ from a solution that was 0.441 F in the salt.
d) 3 litres of a solution containing $10 \mathrm{ppm} \mathrm{NH}_{3}$ from a 0.116 F solution of NH_{3}.

2- Show by calculations how could you prepare the following solutions:
a) $\mathbf{7 5 0} \mathrm{ml}$ of $\mathbf{0 . 1 7 2} \mathrm{F} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ from the solid salt .
b) 50 litres of a solution that is 0.1 F in $\mathrm{Na}_{2} \mathrm{SO}_{4}$ from solid $\mathrm{Na}_{2} \mathrm{SO}_{4}$.
c) 2 litres of a solution that is 0.015 M in $\mathbf{N a}^{+}$from solid $\mathbf{N a C l}$.
d) 20 litres of a solution that is 0.202 M in Na^{+}from a 2.42 F solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

3- Show by calculations how could you prepare 800 ml of $0.20 \mathrm{~F} \mathrm{HNO}_{3}$ from concentrated HNO_{3} has specific gravity of $\mathbf{1 . 4 2}$ and its percentage is $69 \% \mathrm{HNO}_{3}(\mathrm{w} / \mathrm{w})$.

4- A solution of concentrated HCl has specific gravity of 1.185 and percentage is $36.5 \%(\mathrm{w} / \mathrm{w}) \mathrm{HCl}$. Explain how 1.50 litres of approximately 0.3 F HCl should be prepared from the concentrated solution.

5- Describe the preparation of 400 ml of $6 \mathrm{~F} \mathrm{H}_{3} \mathrm{PO}_{4}$ from the commercial solution which is $85 \%(\mathrm{w} / \mathrm{w}) \mathrm{H}_{3} \mathrm{PO}_{4}$ and has density of $1.69 \mathrm{~g} / \mathrm{ml}$.

6- Describe the preparation of 200 ml of $3 \mathrm{~F} \mathrm{H}_{2} \mathrm{SO}_{4}$ from the concentrated solution which is $\mathbf{9 5 \%}(\mathrm{w} / \mathrm{w}) \mathrm{H}_{2} \mathrm{SO}_{4}$ and has density of $1.84 \mathrm{~g} / \mathrm{ml}$.
7- Calculate the formal concentration of $12 \%(w / w) \mathrm{CuSO}_{4}$ solution which has density of $1.13 \mathrm{~g} / \mathrm{ml}$.
8- Calculate the formal concentration of solution that is $\mathbf{2 5 \%}$ in $\mathbf{H}_{2} \mathrm{SO}_{4}$ (\mathbf{w} / w) and has specific gravity of $\mathbf{1 . 1 9}$.

9- A solution was prepared by dissolving 1.68 g of $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ in water and diluting exactly to $\mathbf{5 0 0} \mathbf{~ m l}$. Calculate:
a) the formal concentration of $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$.
b) The molar concentration of K^{+}assuming complete dissociation.
c) the weight-volume percent of $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$.
d) the weight-weight percent of $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ if the density of solution $=$ $1.008 \mathrm{~g} / \mathrm{ml}$.
e) The number of moles $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}$ in $\mathbf{1 6 ~ m l}$ of the solution.

10- Calcium concentration in sea water is $4 \times 10^{2} \mathrm{ppm}$, calculate its formal concentration if the average density of sea water $=1.024 \mathrm{~g} / \mathrm{ml}$.
11- Magnesium concentration in human blood serum is 27 ppm , calculate its molar concentration.

12- Exactly 46.32 ml of NaOH solution is used to titrate 1200 mg sample of primary standard potassium acid phthalate (KHP, fw =204.2), calculate the normality of NaOH solution.

13- Exactly 24.69 ml of $\mathbf{H C l}$ solution is required to titrate a $278 \mathbf{~ m g}$ sample of the primary standard tris(hydroxyl-methyl) amino ethane according to the following reaction:

$$
\mathrm{HCl}+\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \mathrm{CNH}_{2} \longrightarrow\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{3} \mathrm{CNH}_{3} \mathrm{Cl}^{-} .
$$

Calculate the molarity of HCl .
14- Calculate the percentage purity of $500 \mathbf{~ m g}$ sample of impure sodium carbonate that requires 22 ml of $0.18 \mathrm{~N} \mathbf{~ H C l}$ for complete neutralization.

15- An impure 1 g sample of arsenious acid $\left(\mathrm{H}_{3} \mathrm{AsO}_{3}\right)$ is oxidised to $\mathrm{H}_{3} \mathrm{AsO}_{4}$ by titration with 45 ml of 0.08 N iodine. Calculate the percentage of $\mathrm{H}_{3} \mathrm{AsO}_{3}(\mathrm{fw}=125.9)$ and percentage of As.

16- 10 ml of a sample of NaCl solution is diluted to 50 ml . A 20 ml of this solution is titrated with 3.923 ml of $0.011 \mathrm{M} \mathrm{AgNO}_{3}$ solution. Calculate the molarity of the original NaCl solution.

17- 50 ml of sample of chloride requires 15.5 ml of $0.011 \mathrm{M} \mathrm{AgNO}_{3}$ in precipitation titration. Calculate the percentage of chloride $\left(\mathbf{C l}^{-}\right)(W / V)$.

18- 20 ml of 0.05 M EDTA is added to 700 mg of iron(II). The excess of EDTA is back titrated with 5.08 ml of $\mathbf{0 . 0 4 2} \mathrm{M} \mathrm{Cu}^{2+}$ solution. Calculate the percentage of Fe^{2+} as $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the sample.

19- Tin(II) is titrated with dichromate according to the equation:
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{Sn}^{2+}+14 \mathrm{H}^{+} \longrightarrow 3 \mathrm{Sn}^{4+}+2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$.
Calculate the weight of $\operatorname{tin}(\mathrm{II})$ in a sample that requires 20 ml of 0.1 M $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$.

20- A 550 mg sample of aluminum is analysed by adding 50 ml of 0.05 M EDTA. The excess of EDTA is back titrated with 14.4 ml of 0.048 M zinc solution. Calculate the percentage of aluminum in the sample.

