LECTURE 18

1. Polnters:

The pointer is a powerful technique to access the data by indirect

reference as it holds the address of that variable where it has been stored in

the memory.

2. Pointer Declaration:

A pointer is a variable which holds the memory address of another

variable. The pointer has the following advantages:

1.

- A

7

It allows passing variables, arrays, functions, strings and structures as
function arguments.

A pointer allows returning structured variables from functions.

It provides functions which can modify their calling arguments.

It supports dynamic allocation and deallocation of memory segments.
With the help of a pointer, variables can be swapped without physically
moving them.

It allow to establish links between data elements or objects for some
complex data structures such as linked lists, stacks, queues, binary trees,
tries and graphs.

A pointer improves the efficiency of certain routines.

In C++ pointers are distinct such as integer, float, character, etc. A pointer

variable consists of two parts, namely, (i) the pointer operator and (i) the

address operator.

Polnter Operator:

A pointer operator can be represented by a combination of (*) with a
variable, for example int *ptr; where ptr is a pointer variable which holds the

address of an integer data type.

Data_type *pointer_variable;

Example: intx, vy; int *ptrl, *ptr2;

Address Operator:

An address operator can be represented by a combination of & with
pointer variable. For example, if a pointer variable is an integer type and also
declared (&) with the pointer variable, then it means that the variable is of
type “address of”. For example m=&ptr;. Note that the pointer operator & is

an operator that returns the address of the variable following it.

Nopte:

Notice the difference between the reference and dereference operators:

e & s the reference operator and can be read as "address of"

e *isthe dereference operator and can be read as "value pointed by"
Thus, they have complementary [or opposite) meanings. A variable

referenced with & can be dereferences with *.

Examples:

(1)Pir1 = &x; The memory address of variable x is assighed to the pointer
variable ptrl.
(2) Y=*prt1; The contents of the pointer variable ptrl is assigned to the
variable y, not
the memory address.
(3) Pir1=&x; The address of the pirl is assigned to the pointer variable
ptr2. The contents
Pir2=ptr1; of both ptrl and ptr2 will be the same as these two pointer
variables hold
the same address.

Example: |
: andy = 25; |

: ted = &andy; |

I

I I

Right after these two statements, all of the following expressions would give
true asresult:

| o e o ot b |
| andy == 25]
I &andy== 1776 I
| ted==1776 |
| tted == 25 i

Examples of invalid pointer declaration:

(1)int x;
int x_pointer;
X_pointer=&x;
Error: pointer declaration must have the prefix of *.

(2) float vy;
float *y_pointer;
y_pointer=y;
Error: While assigning variable to the pointer variable the address
operator (&) must used along with the variable y.

(3)int x;
char *c_pointer;
C_pointer = &x;

Error: Mixed data type is not permitted.

This simple example to show how can create and use pointer of

char.

#include <iostream.h>
int main()

{

char c='a’;
char*p c=8&c:
cout<< *p_c;

This simple example to show how can create and pointer of

integer.

#include <iostream.h>
main()
{
int myval=10;
int *p_myval;
p_myval = &myval;
cout<<*p myval;

‘

#include <iostream.h>
main()

{
int myval =7;
int *p_myval = &myval;
*np myval = é;
coute<¥*p_myval<<"\n";
cout<<myval;

‘

#include <iostream.h>
main()
{
int myval=5;
int myval2 =7:
int *p_primate;
p_primate = &myval;

*p_primate = 9;

p_primate = &myval2:
*p_primate = 10;
cout<<myval<<” "<<myval2:

#include <iostream.h>
Void main(void)

{

Float value;

Float #*ptr;

Valve = 120.00;

Pir = &value;

Cout<< “Memory address ="<<ptr<<endl:

Pir --;

Cout<<”"Memory address after decrementer =™

Cout<<ptr<<endl;

}

3. Pounters and Functions:

Pointers are very much used in a function declaration. Scmetimes only

with a pointer a complex function can be edasily represented and accessed.
The use of the pointers in a function definition may be classified into two

groups; they are call by value and call by reference.

Call by value:

Whenever a portion of the program invokes a function with formal
arguments, control will be transferred from the main to the calling function
and the value of the actual argument is copied to the function. Within the
function, the actual value copied from the calling portion of the program
may be altered or changed. When the control is transferred back from the

function to the calling portion of the program, the altered values are not

transferred back. This type of passing formal arguments to a function is

technically known as call by value.

A program to exchange the contents of two variables using a call
by value.

#include <iostream.h>
Void main(void)

{

Int x,y;

void swap (int,int);

x=100;

y=20;

cout<<"values before swap”<<endl:

coutsg"x="<<x<<"and y="<<y<<endl; O/P:

swap(x,y): //call by value values before swap
cout<<"values after swap”<<endl; x=100 and y=20
coute<"x="<<x<<"and y="<<y<<endl; values after swap
} x=100 and y=20
int func (int x, inty)

{

inttemp;

temp=x;

X=Y;

y=temp;

}

Call by reference:

When a function is called by a portion of a program, the address of the
actual arguments is copied onto the formal arguments, though they may be
referred by different variable names. The content of the variables that are
dltered within the function block are returned to the calling portion of a
program in the altered form itself, as the formal and the actual arguments are
referencing the same memory location or address. This is technically known as

call by reference or call by address or call by location.

A program to exchange the contents of two variables using a call
by reference

#include <iostream.h>
Void main{void)

{

Int x,y;

void swap (int *x, int *y);

x=100;

y=20;

coul<<"values before swap”"<<endl;

coul<<”x="<<x<<"and y="<<y<<endl; O/P:

swap(&x, &y); //call by reference values before swap
cout<<"values after swap”<<endl; x=100 and y=20
cout<x="<<x<<"and y="<<y<<endl; values after swap
} x=100 and y=100
int func (int *x, int *y)

{

int temp:

temp=*x;

*x = *Yy;

*y=temp;

}

