
Mobile Applications Development Dr. Mazin A. Mohammed

Introduction of Key Concepts of Android

CONTENTS

3.1 App Components .

 3.1.1 Activities .

 3.1.2 Services .

 3.1.3 Content Providers .

 3.1.4 Intents .

3.2 App Resources .

3.3 App Mainfest .

 3.3.1 Elements .

 3.3.2 Attributes .

 3.3.3 Declaring Class Names .

 3.3.4 Multiple Values .

 3.3.5 Resource Values .

 3.3.6 Sting Values .

Understand key concepts of Android is a basic requirement for de- signing Android

mobile apps. In this chapter, we introduce some basic concepts of Android, including the app

components, app resources, and app manifest. Students will able to answer the following

questions after reading this chapter.

1. What is an activity in Android?

2. Can we directly save resource files inside the res/directory?

3. What is an APP MAINFEST?

3.1 APP COMPONENTS

App components are the essential building blocks of an Android app. Each component is

a different point through which the system can enter your app. Not all components are

actual entry points for the user, and some depend on each other, but each one exists as

Mobile Applications Development Dr. Mazin A. Mohammed

its own entity and plays a specific role. Each one is a unique building block that helps

define your app’s overall behavior.

The following subsections represent four types of app components, which include

activities, services, content providers, and intents.

3.1.1 Activities

An activity represents a single screen with a user interface. For ex- ample, an email app

might have one activity that shows a list of new emails, another activity to compose an

email, and another activity for reading emails. Although the activities work together to

form a cohesive user experience in the email app, each one is independent of the others.

As such, a different app can start any one of these activities (if the email app allows it).

For example, a camera app can start the activity in the email app that composes new mail,

in order for the user to share a picture. You can find more information about activities at

https://developer.android.com/guide/components/activities.html.

3.1.2 Services

A service is a component that runs in the background to perform long- running operations

or to perform work for remote processes. A service does not provide a user interface.

For example, a service might play music in the background while the user is in a different

app, or it might fetch data over the network without blocking user interaction with an

activity. Another component, such as an activity, can start the service and let it run or

bind to it in order to inter- act with it. You can find more information about content

providers at https://developer.android.com/reference/android/app/Service.html.

3.1.3 Content Providers

Mobile Applications Development Dr. Mazin A. Mohammed

A content provider manages a shared set of app data. You can store the data in the file

system, a SQLite database, on the web, or any other persistent storage location your app

can access. Through the content provider, other apps can query or even modify the data

(if the content provider allows it). For example, the Android system provides a content

provider that manages the user’s contact information. As such, any app with the proper

permissions can query part of the content provider (such as ContactsContract.Data) to

read and write information about a particular person.

Content providers are also useful for reading and writing data that is private to your

app and not shared. For example, the Note Pad sample app uses a content provider to

save notes. You can find more information about content provider at:

https://developer.android.com/reference/android/content/ContentProvider.html

3.1.4 Intents

An intent is a mechanism for describing a specific action, such as “pick a photo,” “phone

home,” or “open the pod bay doors.” In Android, just about everything goes through

intents, so you have plenty of opportunities to replace or reuse components. For

example, there is an intent for “send an email.” If your application needs to send mail,

you can invoke that intent. Or, if you are writing a new email application, you can

register an activity to handle that intent and replace the standard mail program. The next

time somebody tries to send an email, they’ll get the option to use your program instead

of the standard one. You can find more information about intents at

https://developer.android.com/guide/components/intents- filters.html.

A unique aspect of the Android system design is that any app can start another app’s

component. For example, if you want the user to capture a photo with the device camera,

there’s probably another app that does that and your app can use it, instead of developing

Mobile Applications Development Dr. Mazin A. Mohammed

an activity to capture a photo yourself. You don’t need to incorporate or even link to the

code from the camera app. Instead, you can simply start the activity in the camera app

that captures a photo. When complete, the photo is even returned to your app so you can

use it. To the user, it seems as if the camera is actually a part of your app.

When the system starts a component, it starts the process for that app (if it’s not already

running) and instantiates the classes needed for the component. For example, if your app

starts the activity in the camera app that captures a photo, that activity runs in the process

that belongs to the camera app, not in your app’s process. Therefore, unlike apps on

most other systems, Android apps don’t have a single entry point (there’s no main()

function, for example).

Since the system runs each app in a separate process with file per- missions that restrict

access to other apps, your app cannot directly activate a component from another app.

The Android system, however, can. So, to activate a component in another app, you must

deliver a message to the system that specifies your intent to start a particular component.

The system then activates the component for you.

Intents can be used to activate activities and services, but content providers are activated

when targeted by a request from a Conten tRe- solver. There are separate methods for

activating each type of compo- nent:

1. You can start an activity (or give it something new to do) by passing an Intent to

startActivity() or startActivityForResult() (when you want the activity to return a

result).

2. You can start a service (or give new instructions to an ongoing service) by

passing an Intent to startService(). Or you can bind to the service by passing an

Intent to bindService().

Mobile Applications Development Dr. Mazin A. Mohammed

3. You can perform a query to a content provider by calling query()

on a ContentResolver.

Fig. 3.1 is the default AndroidManifest.xml generated by the Integrated Development

Environment (IDE) after we create a blank Android application. The Main Activity is the

only activity in this project, and it is a subclass of Activity, as “class Main Activity

extends Activity” shown. In Main Activity, we need to implement callback methods that

the system calls when the activity transitions between various states of its life cycle.

The onCreate() method is indispensable, and it will be called when the MainActivity is

created. Within the implementation of the onCre- ate() method, we should initialize the

essential components of this ac- tivity. We must call setContentView() to define the layout

for this activity’s user interface. Although these processes are implemented by IDE, it is

necessary for us to have this knowledge.

Figure 3.1 Default MainActivity.java.

