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Dr. Mustafa B. Al-hadithi 

Lecture Thirteen  

Angular Momentumr and aLine 
 

1- Dynamic Forces on Curve Surfaces due to the Impingement Liquid Jets.  
          In determination of the force and energy transfer between the moving blades and the fluid, 

the relative velocity between the blade and the fluid becomes very important effective factor in 

calculations. The following parameters and notations will be used in our calculation of dynamic 

forces. 

 

 

α1 , angle with direction of motion of the vane, at which the jet enters the       

       vane.  

α2 , angle with direction of motion at which the jet leaves the vane.  

𝜃1 & 𝜃2 , angles which Vr1 and Vr2 makes with direction of motion of vane.  

V1 & V2 absolute velocities of jet at inlet & leaving the vane. 

Vr1 & Vr2 relative velocity at entrance and exit the vane, Vr= V-u 

Vw1&Vw2, horizontal components of V1 & V2 respectively. 

Vf1&Vf2, vertical components of V1 & V2 respectively. 

Fc is the force applied on the C.V by the vane therefore from Eq.6 in L-12 the momentum theorem 

in x-direction as, 

𝐹𝑐 = 𝜌𝑄[(𝑉𝑟𝑥)𝑜𝑢𝑡 − (𝑉𝑟𝑥)𝑖𝑛] = �̇�[𝑉𝑟2 𝑐𝑜𝑠𝜃2 − 𝑉𝑟1𝑐𝑜𝑠𝜃1]                    (1) 

Let the force Rx has to be act opposite to Fc 

𝑅𝑥 = −𝐹𝑐 = �̇�[𝑉𝑟1 𝑐𝑜𝑠𝜃1 − 𝑉𝑟2𝑐𝑜𝑠𝜃2]                                                  (2)   

Power developed by the vane is given by  

𝑃 = 𝑢𝑅𝑥 = 𝑢 ∗ �̇�[𝑉𝑟1 𝑐𝑜𝑠𝜃1 − 𝑉𝑟2𝑐𝑜𝑠𝜃2]                                             (3) 

From the outlet velocity triangle, it can be written 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow of fluid along a moving curved plane 
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(𝑉𝑤2 + 𝑢)2 = 𝑉𝑟2
2 − 𝑉𝑓2

2   

Or    𝑉𝑤2
2 + 𝑢2 + 2𝑉𝑤2𝑢 = 𝑉𝑟2

2 − 𝑉𝑓2
2   

Or  𝑉2
2 − 𝑉𝑓2

2 + 𝑢2 + 2𝑉𝑤2𝑢 = 𝑉𝑟2
2 − 𝑉𝑓2

2  

Or   𝑉𝑤2𝑢 =
1

2
(𝑉𝑟2

2 − 𝑉2
2 − 𝑢2)                                                               (4) 

Similarly from the inlet velocity triangle. It is possible to write 

𝑉𝑤1𝑢 =
1

2
(−𝑉𝑟1

2 + 𝑉1
2 + 𝑢2)                                                                   (5)    

  Addition of Eq's. (4 and 5) with no losses in relative velocity gives 

(𝑉𝑤1 + 𝑉𝑤2)𝑢 =
1

2
(𝑉1

2 − 𝑉2
2)                                                                  (6) 

Power of jet   = �̇�𝑉1
2/2                                                                          (7)         

The efficiency of the vane in developing power is given by 

 

𝜂 =
𝑜𝑢𝑡 𝑝𝑜𝑤𝑒𝑟

𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
=

𝑢𝑅𝑥
�̇�

2
𝑉1

2
                                                                             (8)  

Ex.1  

      A jet of water moving at 60 m/s is deflected by a vane moving at 25 m/s in a direction at 30 

to the direction of the jet. The water leaves the blade normally to the motion of the vanes. Draw 

inlet and outlet triangle of velocities and find the vane angles for no shock at entering & exit. Take 

relative velocity at outlet equal to (0.85Vr1) and calculate the force on the vane of the jet diameter 

equal to (10) cm 

 

Sol.  

𝑢 = 25
𝑚

𝑠
 ;  𝑉1 = 60

𝑚

𝑠
;  ∝1= 30°  

From triangle (ADC) as in below figure 

𝑉𝑤1 = 60 cos 30   

𝑉𝑤1 = 60 ∗ 0.866 = 51.96
𝑚

𝑠
    

Vf1=V1sin30 

𝑉𝑓1 = 60 ∗ 0.5 = 30 𝑚/𝑠  

𝑡𝑎𝑛𝜃1 =
𝐶𝐷

𝐴𝐷−𝐴𝐵
=

𝑉𝑓1

𝑉𝑤1−𝑈
      

𝑡𝑎𝑛𝜃1 =
30

51.96−25
= 1.1127  

𝜃1 = 48°4′  

𝑉𝑟1 =
𝑉𝑓1

𝑠𝑖𝑛𝜃1
=

30

0.7437
= 40.34

𝑚

𝑠
   

From triangle EFG 

𝑉𝑟2 = 0.85 𝑉𝑟1 = 0.85 ∗ 40.34 = 34.29
𝑚

𝑠
  

𝑐𝑜𝑠𝜃2 =
𝐹𝐺

𝐹𝐸
=

𝑢

𝑉𝑟2
=

25

34.29
= 0.729    

𝜃2 = 43°12′   

�̇�𝑟1 = 𝜌𝐴𝑉𝑟1 = 1000 ∗
𝜋(0.1)2

4
∗ 40.34 = 316.7 𝑘𝑔/𝑠  

�̇�𝑟2 = 𝜌𝐴𝑉𝑟2 = 𝑚𝑟1 ∗ 0.85 = 269.1 𝑘𝑔/𝑠  

𝐹𝑐 = �̇�(𝑉𝑟2𝑐𝑜𝑠𝜃2 − 𝑉𝑟1𝑐𝑜𝑠𝜃1)  

𝐹𝑐 = 269.9 ∗ 34.29 cos 43° − 316.7 ∗ 40.34 ∗ 𝑐𝑜𝑠48°4′    
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𝐹𝑐 = −1800 𝑁  

𝑅 = −𝐹𝑐 = 1800 𝑁  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2-  Jet engine. 
A turbo jet engine as shown in Fig. 2 is consists essentially of  

 a compressor  

 a combustion chamber  

 a gas turbine  

 a nozzle 

 

 

 

 

 

 

 

 

 

Applying the momentum theorem for the C.V above as  

(�̇�𝑎 + �̇�𝑓)𝑉𝑟 − �̇�𝑎𝑉 = 𝐹𝑥 − (𝑝2 − 𝑝𝑎𝑡𝑚)𝐴2  

 

Figure 2: Turbo jet engine 
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Or       𝐹𝑥 = (𝑝2 − 𝑝𝑎𝑡𝑚)𝐴2 + �̇�𝑎[(1 + 𝑟)𝑉𝑟 − 𝑉]                                 (9)                                

𝑟 =
𝑚𝑓

𝑚𝑎
   

Where Fx is the force acting on the C.V along the direction of the coordinate axis .  

V =is the velocity of the aircraft  

Vr = Vj-V  is the relative velocity of the exit jet with respect to the aircraft  

Vj= exit jet velocity of gas at nozzle as absolute 

�̇�𝑎&�̇�𝑓 Are the mass flow rate of air and mass burning rate of fuel, usually �̇�𝑓 is very less 

compared to �̇�𝑎.  �̇�𝑓/�̇�𝑎 usually varies from 0.01 to 0.02 in practice. The propulsive thrust on 

the aircraft can be written as  

𝐹𝑇 = −𝐹𝑥 = −[(𝑝2 − 𝑝𝑎𝑡𝑚)𝐴2 + �̇�𝑎(𝑉𝑟 − 𝑉)]  
Since �̇�𝑓 << �̇�𝑎, The propulsive power is given by 

 𝑃 = [ �̇�𝑎(𝑉𝑟 − 𝑉) + (𝑝2 − 𝑝𝑎𝑡𝑚)𝐴2]𝑉                                                (10) 

The mechanical efficiency as the useful work divided by the same of useful work and kinetic 

energy as follows 

 𝜂𝑚  =
𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟

𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
   , 

𝜂 𝑚 =
[(𝑝2−𝑝𝑎𝑡𝑚)𝐴2+�̇�𝑎(𝑉𝑟−𝑉)]𝑉

[(𝑝2−𝑝𝑎𝑡𝑚)𝐴2+�̇�𝑎(𝑉𝑟−𝑉)]𝑉+
�̇�𝑎(𝑉𝑟−𝑉)2

2

  

 𝑖𝑓 𝑝2 ≈ 𝑝𝑎𝑡𝑚.  

𝜂𝑚 =
1

1+
(𝑉𝑟−𝑉)

2𝑉

                                                                                         (11) 

 

 Ex.2  
 An airplane consumes 1 kg fuel for each 20kg air and discharge hot gases from the tail pipe 

at u=1800 m/s determine the mechanical efficiency for the airplane speeds of 300 m/s & 150 m/s 

when 𝑝2 ≈ 𝑝𝑎𝑡𝑚 & 𝑎𝑡 𝑉 = 300
𝑚

𝑠
  

Sol.  

At V=300m/s  ; Vr=Vj-V=1800-300=1500 m/s ; from Eq. 11 

𝜂𝑚 =
1

1+
 (𝑉𝑟−𝑉) 

2𝑉

=
1

1+
1200

600

= 0.333 = 33.3%  

𝑎𝑡 𝑉 = 150
𝑚

𝑠
;  𝑉𝑟 = 1650 𝑚/𝑠  

𝜂𝑚  = 0.1666 = 16.66%  

 

Ex.3 

 A jet engine under static test conditions in laboratory. Consumes 200 N/s air and 2 N/s fuel. 

What is the thrust produced from engine if the gas exit velocity is 450 m/s and the pressure at exit 

equal to atmosphere pressure. 

 

Sol. 

𝐹𝑡 = −�̇�𝑎[(1 + 𝑟)𝑉𝑟 − 𝑉]    𝑟 =
2

200
= 0.01;  𝑉 = 0; 𝑉𝑟 = 𝑉𝑗 = 450 𝑚/𝑠  

𝐹𝑡 = −�̇�𝑎(1 + 𝑟)𝑉𝑟 = −
200

9.81
∗ 1.01 ∗ 450   

𝐹𝑡 = − 9266 𝑁    
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3-  Angular Momentum (Moment of Momentum).  

       The moment of a force 𝐹 ⃗⃗  ⃗ 𝑎𝑏𝑜𝑢𝑡 𝑂 is the vector or cross product  

�⃗⃗� =  𝑟 × 𝐹                                                                                             (12)                                                                           

Where 𝑟  is the position vector from point 0 to any point on the line of action of 𝐹  . Vector product 

of two vector is a vector whose line of action is normal to the plane that contain the crossed vector 

( 𝑟  & 𝐹  ) from Fig.3 the magnitude of the moment of a force as 

 

 

 

 

       

 

 

 

Figure 3: Moment of line force. 

 

𝑀 = 𝐹 𝑟 𝑠𝑖𝑛𝜃                                                                                         (13) 

       Where 𝜃 is the angle between the lines of action of the vector 𝑟  𝑎𝑛𝑑 𝐹  . Replacing the vector 

𝐹  in Eq. 12 by the moment vector 𝑚�⃗�  gives the moment of momentum, and is called the angular 

momentum about O as  

�⃗⃗� = 𝑟 × 𝑚�⃗�                                                                                            (14) 

The angular momentum of differential mass 𝑑𝑚 = 𝜌 𝑑∀  is   

𝑑�⃗⃗� = (𝑟 × �⃗� )𝜌 𝑑∀  

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑓 𝑠𝑦𝑠.  �⃗⃗�  𝑠𝑦𝑠 = ∫ (𝑟 × �⃗� )𝜌 𝑑∀
𝑠𝑦𝑠

  

∴ 𝑟 × �⃗�              𝑖𝑠 𝑡ℎ𝑒 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑚𝑎𝑠𝑠   
The general C.V formulatims of the angular momentums is obtained from Eq. 1 in L-12 by setting 

𝑁 = �⃗⃗� ;  𝜂 = 𝑟 × �⃗�  in the general Reynolds Transport Theorem.  Rate of change of moment of 

momentum as 
𝑑𝐻𝑠𝑦𝑠

𝑑𝑡
=

𝑑

𝑑𝑡
 ∫ (𝑟 × �⃗� )𝜌𝑑∀

𝑠𝑦𝑠
                                                                   (15) 

𝑑𝐻𝑠𝑦𝑠

𝑑𝑡
=

𝑑

𝑑𝑡
 ∫ (𝑟 × �⃗� )𝜌 𝑑∀ + ∫ (𝑟 × �⃗� )𝜌(�⃗� 𝑟 . �⃗� )𝑑𝐴

𝐶𝑆
 

𝐶𝑉
  

In general ∑ �⃗⃗�  =
𝑑

𝑑𝑡
 ∫ (𝑟 × �⃗� )𝜌 𝑑∀ + ∫ (𝑟 × �⃗� )𝜌(�⃗� 𝑟 . �⃗� )𝑑𝐴

𝐶𝑆
 

𝐶𝑉
        (16) 

 𝑉𝑟 = �⃗� − �⃗� 𝑐𝑠 ; 𝜌(�⃗� 𝑟. �⃗� )𝑑𝐴 is the mass flow rate through dA into or out the C.V. For fixed C.V  

𝑉𝑟 = �⃗�  

∑ �⃗⃗�  =
𝑑

𝑑𝑡
 ∫ (𝑟 × �⃗� )𝜌 𝑑𝑉 + ∫ (𝑟 × �⃗� )𝜌(�⃗�  . �⃗� )𝑑𝐴

𝐶𝑆
 

𝐶𝑉
  

For steady flow  

∑ �⃗⃗�  = ∫ (𝑟 × �⃗� )𝜌(�⃗�  . �⃗� )𝑑𝐴
𝐶𝑆

                                                            (17) 

 The angular momentum flow rate can be expressed as the difference between the angular 

momentum of outgoing and incoming streams. If the flow is steady as well as uniform the angular 

momentum is  

∑ �⃗⃗� = ∑ (𝑟 × �⃗� )�̇� − ∑ (𝑟 × �⃗� )�̇�𝑖𝑛𝑜𝑢𝑡                                                (18) 

O 

𝐹  
𝑟   

Direction of rotation 

r sin 
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      In many problem, all the significant force and momentum flows are in the same plane, and 

then giving rise to moments in the same plane, Eq.18 can be expressed in scalar from as  

∑𝑀 = ∑ 𝑟 �̇�𝑉 − ∑ 𝑟�̇�𝑉𝑖𝑛𝑜𝑢𝑡                                                                (19) 

Where r represents the normal distance between the point about which moments are taken and the 

line of action of the force as velocity, 

 

Ex.4  
 A small lawn sprinkler operates as indicated in figure. The inlet mass flow rate is 9.98 kg/min 

with inlet pressure of 30 kPa. The two exit jets direct flow at an angle of 40 above the horizontal. 

Determine the following 

a) Jet velocity relative to the nozzle. 

b) Torque required to hold the arm stationary. 

c) Friction torque if the  arm is rotating at 35 r.p.m. 

d) Maximum rotational speed if we neglect friction 

Sol. 
a) r2=160 mm, dj=5 mm 

For each of the two jets : 

𝑄𝑗 = 0.5
𝑚𝑇

𝜌
=

0.5∗9.98

1000
= 5 ∗ 10−3  𝑚3/min     

𝐴𝑗 =
𝜋𝑑𝑗

2

4
=

𝜋(0.005)2

4
= 1.963 ∗ 10−5 𝑚2   

𝑉𝑗 =
𝑄𝑗

𝐴𝑗
=

5∗10−3

60(1.963∗10−5)
= 4.244𝑚/𝑠   

 

 

 

 

 

b) Torque required to hold the arm stationary taking the moment about the center of rotation  

Inlet moment =0 due to r=0 the basic equation 

∑𝑀 = 𝑇𝑜 = ∑ 𝑚𝑒̇ (𝑟 × �⃗� 𝑟) − ∑ 𝑚𝑖̇ (𝑟 × �⃗� 𝑟)
𝑖𝑛𝑜𝑢𝑡

 

∴ 𝑇𝑜 = 2𝑚𝑒̇  𝑟(𝑉𝑗 𝑐𝑜𝑠 ∝  −𝑟𝜔)  

For stationary arm r=0 

𝑇𝑜 = 2 𝜌𝑄𝑗  𝑟  𝑉𝑗 𝑐𝑜𝑠 ∝  

∴ 𝑇𝑜 = 2 ∗ 1000 ∗ (
0.005

60
) ∗ 0.16 ∗ 4.244 ∗ 𝑐𝑜𝑠40   

𝑇𝑜 = 0.0866 𝑁.𝑚  counter clockwise (A resisting torque which must be applied in the 

counterclockwise direction to keep the arm from rotating in the clockwise direction).  

c) At =30 rpm, calculate the friction torque Tf  

𝜔 =
2𝜋

60
∗ 30 = 𝜋

𝑟𝑎𝑑

𝑠
   

 𝑇𝑜 = 2 𝜌𝑄𝑗  𝑟 ( 𝑉𝑗 𝑐𝑜𝑠 ∝ −𝑟𝜔)  

𝑇𝑜 = 2 ∗ 1000 ∗ (
0.005

60
) ∗ 0.16(4.244𝑐𝑜𝑠40 − 𝜋 ∗ 0.16)  

𝑇𝑜 = 0.07329 𝑁.𝑚  
d) The maximum rotational speed occurs when the opposing torque is zero and all the moment 

of momentum goes to the angular rotation. 

   Vjsin                           Vj 

r                                     Vjcos  

  jet point               Tangential                       

                               Velocity                 
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𝑉𝑗𝑐𝑜𝑠 ∝ −𝑟𝜔 = 0  

𝜔 =
𝑉𝑗𝑐𝑜𝑠∝

𝑟
=

4.244∗𝑐𝑜𝑠40

0.16
= 20.319

𝑟𝑎𝑑

𝑠𝑒𝑐
= 194 𝑟𝑝𝑚  

 

 

 

 

 

 

 

 

 

 

 

 

4-  Radial-Flow Devices.  
The fluid will be affected by centrifugal action of moving blades from the inner radius to the 

outer radius. Due to the suction created by the impeller motion, the fluid enters the eye of the 

impeller axially. The momentum transfer to the fluid by the impeller blades will increase the total 

head of the fluid and causing the fluid to flow out.      

To analyze the centrifugal pump, we choose the annular region that encloses the impeller 

section as the C.V 

: is the angular velocity of shaft impeller blades will have a tangential velocity 

V1,t=r1 at the inlet 

V2,t=r1 at the  outlet                                                                              (20)       

For steady incompressible flow, the conservation of mass equation can be written as  

𝑄1̇ = 𝑄2̇ = �̇� − −−→ (2𝜋𝑟1𝑏1)𝑉1,𝑛 = (2𝜋 𝑟2𝑏2)𝑉2,𝑛                          (21)  

Where b1&b2 are the flow widths at r=r1 inlet & r=r2 at outlet  

The average normal components V1,n & V2,n of absolute velocity can be expressed in terms of the 

volumetric flow rate Q as  

𝑉1,𝑛 =
𝑄

2𝜋𝑟1𝑏1
     &   𝑉2,𝑛 =

𝑄

2𝜋𝑟2 𝑏2
                                                           (22)  

        Since V1,n & V2,n pass through the shaft  center , thus they do not contribute to torque about 

the origin. Only the tangential velocity components contribute to torque and the application of the 

angular momentum as  

∑𝑀 = ∑ 𝑟 �̇�𝑉 − ∑ 𝑟�̇�𝑉𝑖𝑛𝑜𝑢𝑡                                                                (23)    

∑𝑇𝑠ℎ𝑎𝑓𝑡 = �̇�(𝑟2𝑉2,𝑡 − 𝑟1𝑉1,𝑡)                                                               (24)                                                                             

Is known as Euler's turbine formula from Fig. 4. 

 

 

 

 

 

 

 

 

dj=5mm 

160mm 
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∝2 & ∝1 Angles between the direction of absolute flow velocities & the radial direction. 

Substituting Eq.20 in Eq.24 gives an ideal case when the tangential velocity begin equal to the 

blade angular velocity both at inlet & outlet  

𝑇𝑠ℎ,𝑖𝑑𝑒𝑎𝑙 = �̇� 𝜔(𝑟2
2 − 𝑟1

2)  

Shaft power 𝑃𝑠ℎ = 𝜔 𝑇𝑠ℎ =
2𝜋𝑛

60
 𝑇𝑠ℎ                                                      (25)        

Ex.5  
Centrifugal blower has the following specifications.   

𝑟1 = 20𝑐𝑚 , 𝑏1 = 8.2𝑐𝑚   𝑎𝑡 𝑖𝑛𝑙𝑒𝑡  

𝑟2 = 45𝑐𝑚  , 𝑏2 = 5.6𝑐𝑚 𝑎𝑡 𝑜𝑢𝑡𝑙𝑒𝑡   

𝑄 = 0.7
𝑚3

𝑠
 , 𝑛 = 700 𝑟. 𝑝. 𝑚   

∝1= 0∘ 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡     ∝2= 50∘ 𝑓𝑟𝑜𝑚 𝑟𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

Determine the minimum power consumption of the blower 𝜌𝑎𝑖𝑟 = 1.25𝑘𝑔/𝑚3 

Sol. 

∑ 𝑀 = ∑ 𝑟 �̇��⃗� − ∑ 𝑟 �̇��⃗�  𝑖𝑛𝑜𝑢𝑡   

𝑄1 = 𝑄2 = 𝑄 = 0.7 𝑚3/𝑠 ,    �̇� = 𝜌 ∗ 𝑄 = 1.25 ∗ 0.7 = 0.875 𝑘𝑔/𝑠           

𝑉2 =
𝑄

𝐴2
=

0.7

(2𝜋𝑟2∗𝑏2)
=

0.7

(2𝜋∗0.45∗0.056)
= 4.42

𝑚

𝑠
  

𝑇𝑠ℎ = �̇�(𝑟2 𝑉2𝑠𝑖𝑛 ∝ 2 − 𝑟1𝑉1𝑠𝑖𝑛 ∝ 1)  

= 0.875(0.45 ∗ 4.42 ∗ 𝑠𝑖𝑛50 − 0) = 1.33     𝑁.𝑚  

𝑃 = 𝜔. 𝑇𝑠ℎ =
2𝜋𝑛

60
  𝑇𝑠ℎ =

2𝜋∗700

60
∗ 1.33 = 97.75 𝑊        
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Figure 4: Velocities components in radial flow    


