
Mobile Applications Development   Dr. Mazin A. Mohammed 

 

 

2D Graphics and Multimedia in Android 

4.1 Introduction of 2-D Graphics Techniques .......................................  
4.1.1 Color .......................................................................................  
4.1.2 Paint .................................................................................................  
4.1.3 Path .....................................................................................  
4.1.4 Canvas .............................................................................................  
4.1.5 Drawable ................................................................................  
4.1.6 Button Selector ......................................................................  

4.2 Advanced UI Design ........................................................................  
4.2.1 Multiple Screens ...................................................................  
4.2.2 Action Bar ..............................................................................  
4.2.3 Custom Views .......................................................................  

4.3 Overview of Multimedia in Android ............................................  
4.3.1 Understanding the MediaPlayer Class .............................  
4.3.2 Life Cycle of the  MediaPlayer State ..................................  

4.4 Audio Implementations in Android ..............................................  
4.5 Executing Video in Android ...........................................................  

 

 
2-D Graphics and UI Design are two important aspects in User Interface (UI) 

design. In this chapter, we will introduce 2-D graphics and some advanced UI design 

techniques. Main techniques of 2-D graphics include Color, Paint, Path, Canvas, 

Drawable, and Button  Selector. Students will also learn how to create multiple 

screens, action bars, and custom views on the UI. Moreover, multimedia on Android 

systems is a functionality increasing your mobile apps’adoptability. In this chapter, we 

will introduce multimedia in Android and how to add multimedia to our Android app. 

Three main aspects in multimedia include Media, Audio, and Video. 

 

 INTRODUCTION OF 2 D GRAPHICS TECHNIQUES 

Android implements complete 2-D functions in one package, named android.graphics. 

This package provides various kinds of graphics tools, such as canvas, color filter, point, 

line, and rectangles. We can use these graphics tools to draw the screen directly. We will 



Mobile Applications Development   Dr. Mazin A. Mohammed 

 

 

introduce some basic knowledge in detail. First of all, we create a new Android 

application project named ColorTester. 

 

4.1.1 Color 

Colors are represented as packed integers, made up of 4 bytes: Alpha, Red, Green, and 

Blue. Alpha is a measure of transparency, from value 0 to value 255. The value 0 

indicates the color is completely transparent. The value 255 indicates the color is 

completely opaque. Besides alpha, each component ranges between 0 and 255, with 0 

meaning no contribution for that component, and 255 meaning 100% contribution. 

 

We can create a half-opaque purple color like: int color1 = Color.argb(127, 255, 0, 

255); 

 

Or in XML resource file, like: 

<color name=“half_op_purple”>#7fff00ff</color> 

 

The colors in Android XML resource files must be formulated as “#” + 6 or 8 bit 

Hexadecimal number. 

 

Furthermore, Android offers some basic colors as constants, as shown in Fig. 4.1. We 

can use them directly, like: 

int color2 = Color.Black; 

 

In Android Studio, we can preview the color we created in XML file, as shown in Fig. 

4.2. There are some small squares with the color created in the same line. We can see 



Mobile Applications Development   Dr. Mazin A. Mohammed 

 

 

that the #ffffffff is opaque-white, and the #ff000000 is opaque-black.

 

Figure 4.1 Colors as constants provided by Android. 

We can use these color, created in colors.xml by “color/color_name”. 

For example, android:background=“color/my_color”. 

After we define some colors in the XML file, we can reference them by their names, as 

we did for strings, or we can use them in Java code like: 

int  color3  =  getResource().getColor(R.color.my_color); or 

int  color3  =  R.color.text_color 

The getResources() method returns the ResourceManager class for the current activity, 

and get getColor() asks the manager look up a color given a resource ID. 



Mobile Applications Development   Dr. Mazin A. Mohammed 

 

 

 

Figure 4.2 Preview of colors in XML files in Android Studio. 

4.1.2 Paint 

The Paint class holds the style and color information on drawing geometries, text, and 

bitmaps. Before we draw something on the screen, we can set color to a Paint via 

setColor() method. 

 

Figure 4.3 Paint class in Android. 

As shown in Fig. 4.3, we create two Paints, which are cPaint to draw a circle and tPaint 

to draw text. We set the color of the circle as light gray and the color of text as blue. 

Beside colors, we also can set other attributes to Paint class, such as the TextSize. 

 

4.1.3 Path 

The Path class encapsulates multiple contour geometric paths, such as lines, rectangles, 

circles, and curves. Fig. 4.4 is an example that defines a circular path and a rectangle 

path. 

The second line defines a circle, whose center is at position x=300, y=200, with a radius 

of 150 pixels. The fourth line defines a rectangle whose left top point is at position 



Mobile Applications Development   Dr. Mazin A. Mohammed 

 

 

x=150, y=400, and right bottom point is at position x=400, y=650. The 

Path.Direction.CW indicates that the shape will be drawn clockwise. The other direction 

is CCW, which indicates counter-clockwise. 

 

Figure 4.4 Create two Path object and add details to them. 

 

4.1.4 Canvas 

To draw something, we need to prepare four basic components, including a Bitmap to hold 

the pixels, a Canvas to host the draw call, a drawing primitive, and a Paint. The Bitmap 

is the place where to draw something, and the Canvas is used to hold the “draw” calls. A 

drawing primitive can be a Rect, a Circle, a Path, a Text, and a Bitmap. 

In Android, a display screen is taken up by an Activity, which hosts a View, which in turn 

hosts a Canvas. We can draw on the canvas by overriding the View.onDraw() method. A 

Canvas object is the only parameter to onDraw() method. We create a new activity, which 

contains a view called GraphicsView, but not the layout.xml, as shown in Fig. 4.8. 

In Fig. 4.5, we comment the original code and set the content view of this activity to 

some layout.xml, and set it to some new view we created, which is GraphicsView. 

Let’s review the two methods of designing Android apps. There are two methods to design 

Android apps, which are procedural and declarative. The 

“setContentView(R.layout.activity_main)” is a typical example of declarative, 

which is described all objects in the activity using XML files. The 

“setContentView(new GraphicsView(this))” is a typical example of a procedural, 

which means writing Java code to create and manipulate all the user interface objects 



Mobile Applications Development   Dr. Mazin A. Mohammed 

 

 

[56]. 

This new class, GraphicsView, extends the class View. The on- Draw() method is over-

rider and used to implement the function of drawing. Fig. 4.6 shows the details of the 

onDraw() method. We use Paint with different colors to draw a Path on the View via 

calling onDraw(Canvas) method. 

 

Figure 4.5 A new activity whose contentView is the view created our- selves but not 

layout.xml. 

 

Meanwhile, we have another choice to create a Canvas, as shown in Fig. 4.8. In Fig. 4.8, 

we create a Bitmap that is a square whose size is 100*100 and will use it as the argument 

of Canvas. Then we can use this canvas as the same as the one offered in the onDraw() 

method. 

 

4.1.5 Drawable 

Android.graphics.drawable provides classes to manage a variety of visual elements, which 

are intended for display, such as bitmaps and gradients. We can combine drawables with 

other graphics, or we can use them in UI widgets, such as the background for a button. 

Android offers following types of drawables: 



Mobile Applications Development   Dr. Mazin A. Mohammed 

 

 

Bitmap: A bitmap graphic file (.png, .jpg, or .gif). 

Nine-Patch: A PNG file with stretchable regions to allow image resizing based on 

content (.9.png). 

Layer: A Drawable that manages an array of other Drawables. These are drawn in array 

order, so the element with the largest index is be drawn on top. 

 

Figure 4.6 The “onDraw()” method that draws a circle and a rectangle. 

 

 

Figure 4.7 Running result of GraphicsView. 



Mobile Applications Development   Dr. Mazin A. Mohammed 

 

 

 

Figure 4.8 Use Bitmap to create a new Canvas. 

 

State: An XML file that references different bitmap graphics for different states (for 

example, to use a different image when a button is pressed). 

Level: An XML file that defines a drawable that manages a num- ber of alternate 

Drawables, each assigned a maximum numerical value. Creates a LevelListDrawable. 

Transition: An XML file that defines a drawable that can cross-fade between two drawable 

resources. 

Inset Drawable: An XML file that defines a drawable that insets another drawable by a 

specified distance. This is useful when a View needs a background drawable that is 

smaller than the View’s actual bounds. 

Clip: An XML file that defines a drawable that clips another Draw- able based on this 

Drawable’s current level value. 

Scale: An XML file that defines a drawable that changes the size of another Drawable 

based on its current level value. 

Shape: An XML file that defines a geometric shape, including colors and gradients. 

A drawable resource is a general concept for a graphic that can be drawn to the screen 

and that can be retrieved with Application Programming Interface (API). Now we will add 

a gradient background to our ColorTester. We create a drawable resource file in 

res\drawable, and then create a Shape inside the background.xml file, as shown in Fig. 

4.9 and Fig. 4.10. 

Figure 4.9 The first step of creating a new Drawable resource file. 



Mobile Applications Development   Dr. Mazin A. Mohammed 

 

 

As shown in Fig. 4.11, we define a gradient from the start color to the end color. The 

angle indicates the direction of the gradient, and it must be the extract times 45. When 

the angle = 0, the sequence is from left to right. When the angle = 90, the sequence is 

from bottom to top. When the angle = 180, the sequence is from right to left. When the 

angle = 270, the sequence is from top to bottom. 

 

Figure 4.10 The second step of creating a new Drawable resource file. 

 

 

Figure 4.11 Shape Drawable. 

Then add one attribute into the RelativeLayout in activity_main 

.xml as “android:background:@drawable/background”. The running result is shown in 

Fig. 4.12. 

Besides gradient, there are some other common attributes that can be added into a shape, 

including stroke, corners, and padding. We add them into the shape of background.xml, 

and set the color of the stroke is red, the width of the dash is 10dp, etc. The attributes 

and the running result are shown in Fig. 4.13. From Fig. 4.13, we can see that the 



Mobile Applications Development   Dr. Mazin A. Mohammed 

 

 

background is stroked by a red dash, and every corner has a round edge. 

 

Figure 4.12 Gradient background. 

 

 

Figure 4.13 Stroke, Corners, and Padding Drawables 

 

 

4.1.6 Button Selector 

We want to set different colors to buttons when they are at differ-  ent states. We set the 

default color of a button as light purple, and  the color when it is pressed is light orange. 

As we introduced in the previous section, we need to create a drawable resource file to 



Mobile Applications Development   Dr. Mazin A. Mohammed 

 

 

implement this function. Thus, we create a new drawable resource file named 

“button_selection”, and between the <selector> and < /selector> add two items. 

The first one is the pressed state, which indicates that the button is pressed, as shown in 

Fig. 4.14. The second one is the default state, as shown in Fig. 4.15. 

Figure 4.14 Default state of button. 

 

 

Then, we add one attribute to all the three buttons as follows: 

android:background=“@drawable/button_selector". 

The running result is shown in Fig. 4.16. 

 


