
Mobile Applications Development Dr. Mazin A. Mohammed

4.4 AUDIO IMPLEMENTATIONS IN ANDROID

To learn how to play audio, we create a new project named “MediaT- ester” and keep

other configuration default. Then we copy one song from local directory to

“MediaTester\app\src\main\res\raw” directory. Notice that we need to ensure that the

file format can be recognized by Android. Fortunately, Android supports most all kinds

of audio file formats. However, if Android does not support the file format of your audio,

try to transform it to a common format.

First, create two buttons to show the “start” and “pause” functions. As introduced in the

previous chapter, we create two buttons in the activity_main.xml, as shown in Fig. 4.22.

Meanwhile, we need to add two strings in the strings.xml file as:

< stringname = “start_button” > Start < /string >

< stringname = “pause_button” > P ause < /string >

Figure 4.22 Creating two buttons in activity_main.xml.

Then jump into the MainActivity.java file and add a new Medi- aPlayer object into the

MainActivity class as:

private MediaPlayer mp

Then we modify the MainActivity to implement OnClickListener, as introduced in

Mobile Applications Development Dr. Mazin A. Mohammed

previous chapter, and create onClick(View v) method to implement the functions of these

two buttons. Then set OnClickLis- tener to these two buttons, and now the

MainActivity.java is shown as Fig. 4.23.

Figure 4.23 MediaPlayer object and the OnClickListener.

Then in the onClick() method, we implement functions to these two buttons, which are

start a song, pause, and resume it. Before starting a song, we need to create a resource

to the MediaPlayer object. Then we need to tell the computer which audio we want to

play. We can use an integer ID of audio resource to identify the audio resource. In our

example, we use resId = R.raw.test, then we call the start() method to play music. Before

use pause a song, we need to judge whether it is playing. If it is playing, we call pause()

method to pause it; if not, we call start() method to resume it. The code is shown in Fig.

4.24.

The running result is shown in Fig. 4.25. When we click the “START” button, Android

plays the song that we previously put in the raw file. When we click the “PAUSE”

button, Android will pause the song if it is playing or resume it if it is paused.

4.5 EXECUTING VIDEO IN ANDROID

The MediaPlayer class works with video the same way it does with audio. However, we

need to create a surface to play video, and the surface is VideoView class. The

VideoView class can load images from various sources and takes charge of computing its

Mobile Applications Development Dr. Mazin A. Mohammed

measurement from the video. Furthermore, it provides various display options, such as

scaling.

HINT: VideoView does not retain its full state when going into the background. It does not

restore the current play state, position, selected tracks, or any subtitle tracks.

We will add something about video into the MediaTester project.

Figure 4.24 Implementing the functions of two buttons in onClick() method.

Figure 4.25 Running result of the MediaTester.

First, we create a new VideoView below the pause button in

activity_main.xml as follows:

<VideoView

Mobile Applications Development Dr. Mazin A. Mohammed

android:layout_width=“wrap_content”

android:layout_height=“wrap_content”

android:id=“@+id/video”

android:layout_below=“@+id/button_pause”

android:layout_gravity=“center”/>

Then, jumping into Java file, we create a View object named video and

connect it to the VideoView as follows:

VideoView video = (VideoView) findViewById(R.id.video);

Then we need to set a path to identify the location of the video. However, the Android

Virtual Device (AVD) cannot recognize the local path in our computer. Android offers

several options to store persistent application data as follows:

Shared Preferences The SharedPreferences class provides a general framework that

allows you to save and retrieve persistent key-value pairs of primitive data types.

Internal Storage We can save files directly on the device’s internal storage. Files saved to

the internal storage are private in default.

External Storage Android devices support a shared external stor- age to save files. The

external storage can be a removable storage media, such as an SD card, or internal

storage.

SQLite Databases We can use SQLite in Android to create databases that will be

accessible by name to any class in the app.

Network Connection We can use the network to store and retrieve data in our own services.

Before we play a video using VideoView, we need to set a path to locate the video, and

Mobile Applications Development Dr. Mazin A. Mohammed

this path must be inside the AVD itself.

First of all, run an AVD, and jump into Dalvik Debug Monitor Service (DDMS) after

the AVD runs. In Android Studio, select Tools, then Android, then click Android Device

Monitor (Tools → Android → Android Device Monitor), as shown in Fig. 4.26. The

Android Device Monitor will be similar to Fig. 4.27.

Then select the AVD we just run, and then in the “File Explorer” tab, we can see many

folders and files listed. Find the “data” folder and click “Push a file onto the device” on

the right top of the interface, as shown in Fig. 4.28. Then select and push a local video

file onto the device.

Figure 4.26 Android device monitor.

Mobile Applications Development Dr. Mazin A. Mohammed

Figure 4.27 Android device Monitor.

Figure 4.28 Push a file onto the device.

Figure 4.29 Setting video path and start a video.

The DDMS is used to operate the AVD, not the Android app. If we have pushed some

video into a device before, we do not need to push it again in Android Project. Then add

Mobile Applications Development Dr. Mazin A. Mohammed

two methods to the onCreate() method to set the Video path and play it as follows:

video.setVideoPath(“/data/samplevideo.3gp”); video.start();

Then the current onCreate() method can refer to Fig. 4.29.

In the end, the running result is shown in Fig. 4.30.

Figure 4.30 The running result of the MediaTester.

