
Mobile Applications Development Dr. Mazin A. Mohammed

5.1 SCHEDULING ALGORITHMS

5.1.1 Basic Concepts

First of all, some basic concepts must be introduced and explained. Scheduling is

central to operating system design. The success of CPU scheduling depends on two

executions. The first one is the process execution consisting of a cycle of CPU

execution and Input/ Output (I/O) wait. The second one is the process execution, which

begins with a CPU processing, followed by I/O processing, then followed by another

CPU processing, then another I/O processing, and so on. The CPU I/O Processing

Cycle is the basic concept of processor technology. The processing time is the actual

time that is required to complete some job.

The CPU scheduler selects from among the processes in memory that are ready to

execute, and allocates the CPU to one of them. CPU scheduling decisions take place

when a process is switching from run- ning to waiting state; switching from running to

ready state; switching from waiting to ready and terminating.

Beside the CPU scheduler, dispatcher is also a basic and important concept in

processor technology. The dispatcher module gives control of the CPU to the process

selected by the short-term scheduler, and this involves: switching context, switching to

user mode, and jumping to the proper location in the user program to restart that

program. Most dispatchers have dispatch latency, which is the time they take for the

dispatcher to stop one process and start another running.

Then we discuss some criteria of scheduling.

CPU Utilization. The CPU utilization refers to a computer’s usage of processing

resources, or the amount of work handled by a CPU, and it is used to gauge system

performance. Actual CPU utilization varies depending on the amount and type of

Mobile Applications Development Dr. Mazin A. Mohammed

managed computing tasks. The first aim of processor technology is increasing the CPU

utilization by keeping the CPU as busy as possible.

Throughput. The throughput means the amount of processes that complete

their execution per time unit.

Turnaround Time. The turnaround time means the amount of time to execute

a particular process, and it can be calculated as the sum of the time waiting to get into

memory, waiting in the ready queue, and executing on the CPU and the I/O.

Waiting Time. The waiting time means the amount of time a process has been

waiting in the ready queue.

Response Time. The response time means the amount of time it takes from when

a request was submitted until the first response is produced.

Completion Time. The completion time of one job means the amount of time

needed to complete it, if it is never preempted, inter- rupted, or terminated.

Figure 5.1 The diagram of the process states.

As shown in Fig. 5.1, processes have five types of states. At the new state, the

process is in the stage of being created. At the ready state, the process has all the

resources available that it needs to run, but the CPU is not currently working on this

process’s instructions. At the running state, the CPU is working on this process’s

Mobile Applications Development Dr. Mazin A. Mohammed

instructions. At the waiting state, the process cannot run at the moment, because it is

waiting for some resource to become available or for some event to occur. At the

terminate state, the process was completed.

5.1.2 First Come, First Served Scheduling Algorithm

An important measurable indicator of processor is the average com- pletion time of

jobs. Fig. 5.2 represents an example of the schedule for k jobs. As shown in the figure,

there are k jobs, marked as jk, to be completed in the processor. The first job j1 requires

t1 time units so that the job j1 can be finished by time t1. The second job j2 starts after

the fist job j1 is finished, and the required length of time is t2. Therefore, the second

job j2 can be accomplished by the time t1 + t2. Repeat this procedure until the last

job jk is done.

The total completion time:

A = t1 + (t1 + t2) + (t1 + t2 + t3) + ... + (t1 + t2 + t3 + ... + tk)

= k ∗ t1 + (k − 1) ∗ t2 + (k − 2) ∗ t3 + ... + tk

(5.1)

Figure 5.2 A schedule for k jobs.

One of the simplest scheduling algorithm is First Come, First Served (FCFS). The

Mobile Applications Development Dr. Mazin A. Mohammed

FCFS policy is widely used in daily life. For ex- ample, it is the standard policy for

the processing of most queues, in which people wait for a service that was not

prearranged or preplanned. In the processor technology field, it means the jobs are

handled in the orders.

For instance, there are four jobs, j1, j2, j3, and j4, with different processing

times, which are 7, 4, 3, and 6 respectively. These jobs arrive in the order: j1, j2, j3, j4.

In FCFS policy, they are handled by the order of j1, j2, j3, j4, as shown in Fig. 5.3.

The waiting time for j1 is 0, for j2 is 7, for j3 is 11, and for j4 is 14. The average

waiting time is (0+7+11+14)/4 = 8. The average completion time is [7 + (7+4)

+ (7+4+3) + (7+4+3+6)] / 4 = 13.

Suppose that the jobs arrive in the order j2, j3, j4, j1; the result produced by

using FCFS is shown in Fig. 5.4. The waiting time for j1 is 13, for j2 is 0, for j3 is

4, and for j4 is 7. The average waiting time is (13+0+4+7)/4 = 6. The average

completion time is [4 + (4+3) + (4+3+6) + (4+3+6+7)] / 4 = 11. Both the

average waiting time and the average completion time of this scheduling is less than

the previous one.

Figure 5.3 An example of FCFS scheduling.

Figure 5.4 Another FCFS result if changing arrival sequence.

5.1.3 Shorted Job First Scheduling Algorithm

Mobile Applications Development Dr. Mazin A. Mohammed

Then we will introduce another scheduling policy, which is Shortest Job First (SJF). SJF

is a scheduling policy that selects the waiting process with the smallest execution time

to execute first. SJF is advantageous because of its simplicity, and it minimizes the

average completion time. Each process has to wait until its execution is complete.

Using the example mentioned in Section 2.2, while ignoring their arrival time,

we first sort these jobs by their processing time, as j3, j2, j4, j1. The SJF

scheduling result is shown in Fig. 5.5. The waiting time for j1 is 13, j2 is 3, j3 is

0, and j4 is 7. The average waiting time is (13+3+0+7) = 5.75. The completion

time for j1 is (13+7), j2 is (3+4), j3 is (0+3), j4 is (7+6). The average

completion time is (20+7+3+13)/4 = 10.75. This scheduling has lower average

waiting time and average completion time than the previous two schedules.

Figure 5.5 An example of SJF scheduling.

Theorem: SJF scheduling has the lowest total completion time with a single

processor.

Proof by contradiction: Assuming that there are a series of jobs that were

sorted by their completion time from short to long, as j1, j2, j3, . . . , ji, ji+1, . . . , jk, which

also means the completion time of them can be ordered as t1 < t2 < t3 < · · · < ti < ti+1 < · · ·

< tk. Using the SJF scheduling algorithm, the result is exactly the same as the or- der

j1, j2, j3, . . . , ji, ji+1, . . . , jk. Then we suppose that there is another order A that has lower

total completion time than the one produced by SJF, j1, j2, j3, . . . , ji+1, ji, . . . , jk. Based

on Equation 5.1, the total completions time is T = k ∗ t1 + (k − 1) ∗ t2 + (k − 2) ∗ t3 + · · ·

+ (k − i + 1) ∗ ti + (k − i) ∗ ti+1 + · · · + tk. So, we can get the total completion time of both

Mobile Applications Development Dr. Mazin A. Mohammed

orders. The SJF one is Ts = k ∗ t1 + (k − 1) ∗ t2 + (k − 2) ∗ t3 + · · · + (k − i + 1) ∗ ti +

(k − i) ∗ ti+1 + · · · + tk. The A one is Ta = k∗t1+(k−1)∗t2+(k−2)∗t3+· ·

·+(k−i+1)∗ti+1+(k−i)∗ti+· · ·+tk. From the supposing condition, Ts < Ta.

Ts > Ta;

k∗t1+(k−1)∗t2+(k−2)∗t3+· · ·+(k−i+1)∗ti+(k−i)∗ti+1+· · ·+tk

>k∗t1+(k−1)∗t2+(k−2)∗t3+· · ·+(k−i+1)∗ti+1+(k−i)∗ti+· · ·+tk; (k − i + 1) ∗ ti + (k

− i) ∗ ti+1 > (k − i + 1) ∗ ti+1 + (k − i) ∗ ti;

ti > ti+1.

However, ti > ti+1 is contradictory to ti < ti+1, in the assum- ing condition. As a

result, A does not exist, which means there is no solution that has lower total

completion time than the SJF scheduling. In the end, we can conclude that SJF

scheduling has the lowest average waiting time with a single processor. However, is

SJF still optimal with multiple processors?

5.1.4 Multiprocessors

After discussing the single processor, we will expand the topic into multiprocessors.

There are nine jobs with different completion times in three processors, as shown in

Fig. 5.6, and we first give an opti- mal schedule using SJF. The average completion

time is {(3+5+6) + [(6+10)+(5+11)+(3+14)] +

[(3+14+15)+(5+11+18)+(6+10+20)] }

/ 9 = 18.33. There is another optimal schedule, as shown in Fig. 5.7.

The average completion time is {(3+5+6) + [(5+10)+(3+11)+(6+14)]

+ [(5+10+15)+(6+14+18)+(3+11+20)] } / 9 = 18.33.

In multiprocessors, there are three theorems:

Mobile Applications Development Dr. Mazin A. Mohammed

Figure 5.6 An SJF schedule to complete nine jobs in three processors.

Theorem 5.1 SJF scheduling has the optimal average waiting time and completion

time in the multiprocessor.

Theorem 5.2 With the same average waiting time, there is more than one schedule with

various final completion time.

Theorem 5.3 The algorithm to find the optimal final completion time is NP-Hard.

Assuming that the processing time of j1 to j3k is t1 to t3k, respec- tively, the

average completion time in three processors calculates as Equation 5.2: The

average completion time is

{(t1 + t2 + t3) + (t1 + t2 + t3 + t4 + t5 + t6) + · · · + (t1 + t2 + · · · + t3k)}/3k

= {k(t1 + t2 + t3) + (k − 1)(t4 + t5 + t6) + · · · + (t3k−2 + t3k−1 + t3k)}/3k.

(5.2)

Mobile Applications Development Dr. Mazin A. Mohammed

Then we assign that T1 = t1 + t2 + t3, T2 = t4 + t5 + t6, . . . ,

Figure 5.7 Another schedule to complete nine jobs in three processors.

Tk = t3k−2 + t3k−1 + t3k. The total completion time in three processors can be

formulated as kT1 +(k−1)T2 +· · ·+Tk. At last, we can formulate this problem into the

one in a single processor. In the end, we can use

the same method as the one in Section 2.3 to prove that the SJF schedule has the

optimal average completion time in multiprocessors. From Equation 5.2, we can see that

the detailed sequence of j1, j2, j3 does not impact the average waiting time of the

whole schedule. As a result, the two schedules in Fig. 5.6 and Fig. 5.7 have the same

average waiting time. However the time when the last job is completed these two

schedules are different, which are 36 and 38. If there is a time constraint that is

less than 38, the second schedule is not suitable, while the first schedule can be

chosen. Furthermore, there are many other schedules having the same average waiting

time with these two schedules, because changing the sequence of j3i+1, j3i+2, j3i does not

change the average waiting time. Nevertheless, the time when the last job is completed

Mobile Applications Development Dr. Mazin A. Mohammed

is various, and how to find the optimal schedule that has the least time when the last job

is completed is too hard to be solved by normal algorithms. This problem is a typical NP-

Hard problem, and we will discuss this problem and how to solve it in later chapters.

5.1.5 Priority Scheduling Algorithm

The next scheduling algorithm is Priority Scheduling algorithm. In priority

scheduling, a priority number, which can be an integer, is as- sociated with each

process. The CPU is allocated to the job with the highest priority, and the smallest

integer represents the highest prior- ity. The priority scheduling can be used in the

preemptive and nonpre- emptive schemes. The SJF scheduling is a priority scheduling,

where priority is the predicted next CPU processing time. The following is a given

example about the implementation of the priority scheduling in preemptive schemes,

as shown in Fig. 5.8. The priority of each job is in- verse with its processing time. As a

result, the result using the priority scheduling algorithm is the same as the result from

SJF scheduling.

The priority scheduling has the potential restrictions deriving from process

starvations. The Process Starvation is the processes that re- quire a long completion

time, while processes requiring shorter com- pletion times are continuously added. A

scheme of “Aging ” is used to solve this problem. As time progresses, the priority of

the process in- creases. Another disadvantage is that the total execution time of a job

must be known before the execution. While it is not possible to exactly predict the

execution time, a few methods can be used to estimate the execution time for a job,

such as a weighted average of previous exe- cution times.

At last, we will introduce the Round Robin (RR) scheduling. In RR scheduling, each

job gets a small unit of CPU time, called time quantum, usually 10 - 100 milliseconds.

Mobile Applications Development Dr. Mazin A. Mohammed

After this time has elapsed, the job is preempted and added to the end of the ready

queue. If there are n jobs in the ready queue and the time quantum is q, then each job

gets 1/n of the CPU time in chunks of at most q time units at once. No job waits more

than (n − 1) time units. If the q is large, the RR scheduling will be the FCFS

scheduling. Nevertheless, if the q is small, the overhead may be too high because of

the too-often context switch.

Figure 5.8 An example of the priority scheduling.

Actually, there are two kinds of scheduling schemes that are non- preemptive and

preemptive.

Nonpreemptive.

The nonpreemptive scheduling means that once the CPU has been allocated to

a process, the process keeps the CPU resource until it releases the CPU either

by terminating or switching to a waiting state.

Preemptive.

In the preemptive schemes, a new job can preempt CPU re- sources, if its CPU

Mobile Applications Development Dr. Mazin A. Mohammed

processing length is less than the remaining time of the current executing job.

This scheme is known as the Shortest-Remaining-Time-First (SRTF).

In computer science, preemption is the act of temporarily interrupting a job being

carried out by a computer. It is normally carried out by a privileged job on the system

that allows interruptions. Fig. 5.5 shows SJF scheduling in the situation when all the

jobs arrive at the same time, but situation will be complicated when considering their

different arrival times, especially in preemptive scheme.

Figure 5.9 An example of the nonpreemptive SJF solution.

Still taking the example mentioned in Section 5.2.2, add arrival times to them,

j1 arriving at time 0.0; j2 arriving at time 2.0; j3 ar- riving at time 4.0; j4 arriving

at time 5.0. The SJF scheduling in a nonpreemptive scheme is shown in Fig. 5.9.

At time 0, j1 arrives, and there are no other jobs competing with it, so j1 is in the

running list. At time 2, 4, and 5, j2, j3, and j4 arrive, respectively.

However, they cannot interrupt j1 and grab the resource j1 is using, so they are all

in the waiting list. At time 7, j1 is finished, and now there are three jobs in the

waiting list. Among these three jobs, j3 needs the shortest processing time, so it

gets the resource and turns into the running list. At time 10, j3 is finished, and now

there are two jobs in the waiting list, which are j2 and j4. Since j2 needs a shorter

processing time than j4 does, j2 gets the resource and turns into the running list.

At time 14, j2 is finished, and now there is only one job in the waiting list, which is

j4. So j4 gets the resource and turns into the running list. Finally, j4 is finished at

time 20. In this scheduling, the waiting time for j1 is 0, j2 is (10-2), j3 is (7-4),

Mobile Applications Development Dr. Mazin A. Mohammed

and j4 is (14-5). The average waiting time is (0+8+3+9)/4 = 5. The completion

time for j1 is 7, j2 is (14-2), j3 is (10-4), and j4 is (20-5). The average completion

time is (7+12+6+15)/4 = 10.

Figure 5.10 Example of the preemptive SJF solution.

The SJF scheduling in a preemptive scheme is shown in Fig. 5.10. At time 0, j1

arrives, and there are no other jobs competing with it, so j1 is in the running list.

At time 2, j2 arrives, and j2 has shorter processing time than j1, so it preempts j1.

j1 goes to the waiting list, while j2 in the running list. At time 4, j3 arrives. j3 needs

3 time to be completed, while j2 needs 2 time. So j3 cannot preempt j2 and stays

in the waiting list. At current stage, j1 and j3 are both in the waiting list.

Next, at time 5, j4 arrives, but it has longer processing time than j2, so it cannot

preempts j2. j4 joins in the waiting list. At time 6, j2 is finished, and now there are

three jobs in the waiting list. Among them, j3 needs the shortest processing time, so

j3 get the resource, while others are still waiting. At time 9, j3 is finished, and now

there are two jobs in the waiting list. Since j1 needs a shorter processing time, which

is 5, than j4 does, which is 6. j1 gets the resource and turns into the running list.

At time 14, j1 is finished, and now there is only one job in the waiting list, which

is j4. As a result, j4 get the resource and is finally finished at time 20. In this

scheduling, the waiting time for j1 is 9-2, j2 is (0), j3 is (6-4), and j4 is (14-5). he

average waiting time is (7+0+2+9)/4 = 4.5. The completion time for j1 is 14, j2

is (6-2), j3 is (9-6), and j4 is (20-5). The average completion time is

(14+4+3+15)/4

= 9.

Mobile Applications Development Dr. Mazin A. Mohammed

5.1.6 ASAP and ALAP Scheduling Algorithm

First, we will introduce the Directed Acyclic Graphs (DAG) to model the scheduling

problem about the delay in processors. A DAG is a directed graph with no directed

cycles. It is formed by a collection of vertices and directed edges, each edge connecting

one vertex to another. There is no way to start at some vertex and follow a sequence of

edges that eventually loop back to this vertex. We create a DAG with a source node

and a sink node, as shown in Fig. 5.11. The source node is V0, and the sink node is

Vn. The solid lines refer to the execution delay between nodes. Broken lines mean

there is no execution delay between nodes. For example, neither source node nor sink

node has the execution time.

Moreover, students need to understand two concepts before intro- ducing the

algorithm, including Predecessor and Successor. A Prede- cessor refers to the node that

needs to be finished before the current node. For example, in Fig. 5.11, v2 and v3 are

the predecessors of v5.

A Successor refers to the node that succeeds the current node. In Fig. 5.11, v4 is v1’s

successor.

As exhibited in Fig. 5.11, we define V = {v0, v1 , . . . vn} in which v0 and vn are

pseudo nodes denoting the source node and sink node, respectively. D = {d0, d1, . . . ,

dn} where di denotes the execution delay of vi;

Mobile Applications Development Dr. Mazin A. Mohammed

Figure 5.11 A sample of the directed acyclic graph.

Then we use a topological sorting algorithm to produce a legal sequence, which is

scheduling for uniprocessor. A topological sorting of a directed acyclic graph is a linear

ordering of its vertices, such that for every directed edge {u, v} from vertex u to vertex

v, u comes before v in the ordering. First, finding a list of nodes whose indegree = 0,

which means they have no incoming edges, inserting them into a set S, and removing

them from V . Then starting the loop that keeps removing the nodes without incoming

edges until V is empty. The output is the result of topological sorting and the

scheduling for the uniprocessor. Referring to Fig. 5.11, we can get three results: {v0,

v1, v4, v7, vn }, { v0, v2, v5, v7, vn }, and { v0, v3, v6, vn }.

To eliminate the latency, we assign values to di and simplify the

problem. We set d1, d2, d3, d4, and d5 as 1. We use two scheduling

algorithms, which are As-Soon-As-Possible (ASAP) and As-Late-As- Possible (ALAP)

Scheduling Algorithms.

5.1.6.1 ASAP

Mobile Applications Development Dr. Mazin A. Mohammed

0

Figure 5.12 A simple ASAP for minimum latency scheduling.

As shown in Fig. 5.12, first, set ts = 1, and v0 has no predecessors, and d0 is 0.

Thus, v0 has the same latency as its successors, v1, v2 , and v3. In this step, v0 is

scheduled. Then because v1’s predecessor v0 is scheduled, it can be selected at the 1

latency time. The same operations can be implemented with v2 and v3 at the first

latency time unit. In this step, v1, v2, and v3 are scheduled. Then v4 can be selected

at the 2 latency, because its predecessors, v1 and v2, are scheduled. However, v5 cannot

be selected at the 2 latency, because one of its predecessors, v4, is not scheduled before

the 2 latency. Then after v4 is scheduled, v5 can be selected at the 3 latency, because its

predecessors, v3 and v4, are scheduled. At last, vn is selected at 4 latency, because its

predecessor, v5 is scheduled.

In ASAP for minimum latency scheduling algorithm:

Step 1: schedule v0 by setting ts = 1. This step is for launching the calculation

of the algorithm.

Step 2: select a node vi whose predecessors are all scheduled. This process will be

Mobile Applications Development Dr. Mazin A. Mohammed

n

repeated until the sink node Vn is selected.

Step 3: schedule vi by setting ts = max ts +dj. The equation represents the

current node status at the exact timing unit. It represents the latency time at the current

node is summing up the maximum latency time of the predecessors’ nodes.

i j:vj→vi∈E j

Step 4: repeat Step 2 until vn is scheduled.

5.1.6.2 ALAP

Figure 5.13 ALAP scheduling for latency-constraint scheduling.

As shown in Fig. 5.13, first, schedule the button node vn at the time latency 3+1,

and set tL = 4. In this step, vn is scheduled. Then v3 and v5 can be selected at the 3

time latency, because their successor, vn, is scheduled. In this step, v3 and v5 are

scheduled. Then v4 can be selected at the 2 time latency, because its successor, v5, is

Mobile Applications Development Dr. Mazin A. Mohammed

n

scheduled. In this step, v4 is scheduled. In this time latency, although v0 is the

predecessor of v3, it cannot be selected at the 2 time latency, because v0’s other

successors, v1 and v2, are not scheduled. Then v1 and v2 can be selected at the 1 time

latency, because their successor, v4, is scheduled. In this step, v1 and v2 are scheduled.

At last, v0 can be selected at 1 time latency, because its successor, v1, v2, and v3, are

scheduled, and d0 is 0.

In ALAP for latency-constraint (λ) scheduling algorithm:

Step 1: schedule vn by setting tL = λ + 1. This step means the

first scheduled node is vn.

Step 2: select a node vi whose successors are all scheduled. It means the selected

node must be a node whose successors must be scheduled. This process will be

repeated until the source node v0 is selected.

Step 3: schedule vi by setting tL = min tL+dj. The equation represents the

current node status at the exact timing unit. It represents that the latency time at

the current node is subtracting the sum of minimum latency times from the sink

node’s latency- constraint.

i j:vj→vi∈E j

Step 4: repeat Step 2 until v0 is scheduled. Fig. 5.13 exhibits an ALAP

scheduling for latency-constraint scheduling.

Comparing ASAP and ALAP scheduling as shown in Fig. 5.12 and Fig. 5.13, we

can find that v3 can be completed at several time latencies. It can be completed at 1 time

latency as soon as possible, and 3 time latency as late as possible.

In this section, we introduce some basic concepts, such as CPU utilization, waiting

time, response time, and completion time. Then we introduce some scheduling

Mobile Applications Development Dr. Mazin A. Mohammed

algorithms, including First-Come, First Server, Shortest-Job-First, priority scheduling,

Round Robin, As-Soon- As-Possible, and As-Late-As-Possible. In the next section, we

introduce the processor technology about scheduling algorithm in single processor and

multi-processor.

