

1

5.3 MEMORY TECHNOLOGY

Memory is one of the fastest evolving technologies in embedded systems

over the recent decade. No matter how fast processors can run, there is

one unchanged fact so that every embedded system needs memory to

store data. Furthermore, with the rapid development of the processor,

more and more data pass back and forth between the processor and the

memory. The bandwidth of a memory, which is the speed of the

memory, becomes the major constraint impacting the system’s perfor-

mance.

When building an embedded system, the designers should consider

the overall performance of the memory in the system. There are two

key metrics for memory performance: write ability and storage per-

manence. Writing in memory can be various in different memory tech-

nologies. Some kinds of memories, such as Random-Access Memory

(RAM), require special devices or techniques for writing. A RAM de-

vice allows data items to be read and written in roughly the same

amount of time regardless of the order in which data items are ac-

cessed. The two main forms of modern RAM are Static RAM (SRAM)

and Dynamic RAM (DRAM). In SRAM, a bit of data is stored using

the state of a six transistor memory cells. This form of RAM is more

2

expensive to produce, but it is generally faster and requires less power

than DRAM and, in modern computers, is often used as cache mem-

ory for the CPU. DRAM stores a bit of data using a transistor and

capacitor pair, which together comprise a DRAM memory cell. The

capacitor holds a high or low charge (1 or 0, respectively), and the

transistor acts as a switch that lets the control circuitry on the chip read

the capacitor’s state of charge or change it. As this form of mem- ory is

less expensive to produce than static RAM, it is the predominant form

of computer memory used in modern computers.

At the high end of the memory technology, we can select the mem-

ory that the processor can write to simply in a short time. There are

some kinds of memories that can be accessed by setting address lines,

or data bits, or control lines appropriately. At the middle of the range

of memory technology, some slow written memory can be chosen. At

the low end are the types of memory that require special equipment for

writing.

Besides the write ability, we also need to take storage permanence

into consideration. How long the memory can hold the written bits in

themselves can have a key impact on the reliability of the system. In

the aspect of storage permanence, there are two kinds of memory

technologies: nonvolatile and volatile. The major difference is that the

3

nonvolatile memory can hold the written bits after power is no longer

supplied, but volatile cannot. The nonvolatile memory is typically used

for the task of secondary storage, or long-term persistent storage.

Meanwhile, the most widely used form of primary storage to- day is

volatile memory. When the computer is shut down, anything contained

in the volatile memory is lost. The advanced memory technology needs

to attach to the operating system. Dynamic programming is an option for

heterogeneous memories’ optimizations, which will be discussed later.

5.4 MOBILE EMBEDDED SYSTEMS

5.4.1 Embedded Systems in Mobile Devices

A mobile device is a typical embedded system, which is formed by a

group of electronic components, such as mobile processors, storage,

memory, graphics, sensors, camera, battery, and other chips. Integrat-

ing these electronic parts is to achieve a variety of desired functions for

different purposes. In this section, we will use the smartphone to

represent an example of a mobile embedded system. A smart phone is

one of the most adopted mobile devices in contemporary people’s lives.

Currently, the hardware structures of most smartphones are two-

processor frameworks. The two processors are the application processor

4

and the baseband processor, which are shown in Fig. 5.14. The Appli-

cation Processor is in charge of running a mobile operating system and

various kinds of mobile apps. It is the one that controls the whole sys-

tem. Most functions provided by chips, such as the keyboard, screen,

camera, and sensors, are controlled by the application processor.

Meanwhile, the Baseband Processor is responsible for wireless com-

munication. This wireless communication is not the cellular or Wi-Fi

network, and it is the telephone network with Radio Frequency (RF).

The radio frequency is a rate of oscillation, which corresponds to the

frequency of radio waves, and the alternating currents that carry ra- dio

signals. The radio frequency module is used to send signals to the

telephone network. There are two other basic modules in the base-

band processor, which are the Digital Baseband (DBB) and the Ana- log

Baseband (ABB). They modulate and demodulate the voice signal and

the digital signal, encode and decode the communication channel,

5

Figure 5.14 Hardware structure of a smartphone.

and control the wireless modem (modulator-demodulator). The appli-

cation processor communicates with the baseband processor via the

serial port, USB, and others.

5.4.2 Embedded Systems in Android

After introducing the hardware structure of the smartphone, we will

take Android as an example to explain the Kernel inside Android and

show how the Kernel works. As discussed in Chapter 1, Android is

based on the Linux Kernel, and the Linux Kernel is an abstract layer

between the hardware and the software. The basic functions of An-

6

droid are provided by the Linux Kernel core system service, such as

file management, memory management, process management, network

stack, and drivers. The Linux Kernel also provides drivers to support

all the hardware related to the mobile embedded system. As shown in

Fig. 5.15, there are display driver, keyboard driver, audio driver, power

management, Wi-Fi driver, camera driver, and other sensor drivers. We

will list some of them and explain what they do.

Display Driver. It is based on the framebuffer driver in Linux.

The framebuffer offers a mechanism that allows the application

to directly control the change of the screen.

Keyboard Driver. It is the driver for buttons on the mobile device,

such as the Home button, the Menu button, the Return button,

and the Power button.

Wi-Fi Driver. It is the driver for Wi-Fi connection based on IEEE

802.11.

Sensor Driver. Most Android-powered devices have built-in sen-

sors that measure motion, orientation, and various environmental

conditions. These sensors are capable of providing raw data with

high precision and accuracy, and are useful if you want to monitor

three-dimensional device movement or positioning, or you want

7

to monitor changes in the ambient environment near a device.

For example, a game might track readings from a device’s grav-

ity sensor to infer complex user gestures and motions, such as

tilt, shake, rotation, or swing. Likewise, a weather application

might use a device’s temperature sensor and humidity sensor to

calculate and report the dewpoint, or a travel application might

use the geomagnetic field sensor and accelerometer to report a

compass bearing.

Above the Linux Kernel is the hardware abstraction layer, which

provides an easy way for applications to discover the hardware on the

system. The “abstract” of the hardware abstraction layer does not mean

the real operations of the hardware, and the operations of the hardware

are still achieved by drivers. However, the interfaces offered by the

hardware abstraction layer make it simple for developers to “use” the

hardware.

Hardware Abstraction Layer Hardware abstraction layer is a

software subsystem for UNIX-based operating systems providing hard- ware

abstraction. The purpose of the hardware abstraction layer is to allow

application to discover and use the hardware of the host system through a

simple, portable, and abstract Application Programming Interface (API),

regardless of the type of the underlying hardware.

8

Figure 5.15 Linux Kernel of Android.

5.4.3 Power Management of Android

Android supports its own power management (on top of the standard

Linux power management) designed with the premise that the CPU

should not consume power if no applications or services require power.

As shown in Fig. 5.16, Android requires that applications and services

request CPU resources with wake locks through the Android applica-

tion framework and native Linux libraries. If there are no active wake

locks, Android will shut down the CPU. The wake locks are used by

applications and services to request CPU resources. The power man-

agement uses wake locks and time-out mechanism to switch the state

of system power, so that system power consumption decreases.

Currently, Android only supports screen, keyboard, buttons back-

light, and the brightness of the screen. As shown in Fig. 5.17, when a

user application acquires full wake lock or a screen/keyboard touch

9

activity event occurs, the machine will enter “awake” state. If timeout

happens or the power key is pressed, the machine will enters the “no-

tification” state. If partial wake locks are acquired, it will remain in

“notification”. If all partial locks are released, the machine will go into

“sleep.

Figure 5.16 Power management of Android.

5.4.4 Embedded Systems in Mobile Apps

The mobile embedded systems are under the layer of mobile operating

systems. The mobile embedded systems cannot directly used by mobile

apps, and they only can be used through mobile operating systems,

such as iOS and Android. We will take Android as an example.

Android is already an embedded operating system, and its roots are

10

derived from embedded Linux. The main hardware platform for

Android is the Acorn RISC Machine (ARM) architecture. ARM is a

family of instruction set architectures for computer processors based

on a reduced instruction set computing architecture. An approach that is

based on reduced instruction set reduces costs, heat, and power

consumption. Such reductions are desirable traits for light, portable,

battery-powered devices, and other embedded systems. Android de-

vices incorporate many optional hardware components, including cam-

eras, GPS, orientation sensors, dedicated gaming controls, accelerome-

ters, gyroscopes, barometers, magnetometers, proximity sensors, ther-

mometers, and touch-screens.

Figure 5.17 A finite-state machine of the Android power management.

We can use Android Software Development Kit (SDK) to develop

our own mobile apps, and via the methods that are already imple-

11

mented to use the embedded systems inside a mobile device. For ex-

ample, developers only can use the camera of a mobile device through

calling methods encapsulated in the Android SDK. This design method

makes the process of developing mobile apps much simper than old

methods. The developers do not need to spend time designing the in-

teraction with embedded systems inside an Android device, and they

only need to know what functions Android SDK can provide. We will

introduce more knowledge about Android SDK and developing tech-

nologies in the next chapter.

