Theory of Computational

Languages

- In English, we distinguish 3 different entities: letters, words, and sentences.
 - -Groups of letters make up words and groups of words make up sentences.
 - -However, not all collections of letters form valid words, and not all collections of words form valid sentences.
- This situation also exists with computer languages.
 - -Certain (but not all) strings of characters are recognizable words (e.g., IF, ELSE, FOR, WHILE ...); and certain (but not all) strings of words are recognizable commands.
- To construct a general theory of **formal languages**, we need to have a definition of a **language structure**, in which the decision of whether a given string of units constitutes a valid larger unit is not a matter of guesswork, but is based on explicitly stated rules.
- In this model, language will be considered as symbols with formal rules, and not as expressions of ideas in the minds of humans.
- The term "formal" emphasizes that it is the form of the string of symbols that we are interested in, not the meaning.

Basic Definitions

<u>Alphabet</u>: A finite non-empty set of symbols (letters), is called an alphabet. It is denoted by Σ (Greek letter sigma).

Example: $\Sigma = \{a,b\}$

 Σ ={0,1} //important as this is the language //which the computer understands.

 $\Sigma = \{i,j,k\}$

Strings: Concatenation of finite symbols from the alphabet is called a string.

Words: Words are strings belonging to some language.

Example: If $\Sigma = \{x\}$ then a language L can be defined as

 $L=\{x^n: n=1,2,3,....\}$ or $L=\{x,xx,xxx,....\}$

Here x,xx,... are the words of L

(All words are strings, but not all strings are words).

EMPTY STRING or NULL STRING

• We shall allow a string to have no letters. We call this **empty string** or **null string**, and denote it by the symbol Λ .

- 2012-2013
- For all languages, the **null word**, if it is a word in the language, is the word that has no letters. We also denote the null word by Λ .
- Two words are considered the same if all their letters are the same and in the same order.
- For clarity, we usually do not allow the symbol Λ to be part of the alphabet of any language.

Discussion of null

- The language that has no words is denoted by the standard symbol for null set, \emptyset .
- It is not true that Λ is a word in the language \emptyset since this language has no words at all.
- If a certain language L does not contain the word Λ and we wish to add it to L, we use the operation "+" to form L + $\{\Lambda\}$. This language is **not** the same as L.
- However, the language $L + \emptyset$ is the same as L since no new words have been added.

Introduction to Defining Languages

- The rules for defining a language can be of two kinds:
 - -They can tell us how to test if a string of alphabet letters is a valid word, or
 - -They can tell us how to construct all the words in the language by some clear procedures.

Defining Languages

Example: Consider this alphabet with only one letter $\Sigma = \{x\}$

• We can define a language by saying that any nonempty string of alphabet letters is a word $L_1 = \{x, xx, xxx, xxxx, ...\}$ or $L_1 = \{x^n \text{ for } n = 1, 2, 3, ...\}$

Note that because of the way we have defined it, the language L_1 does not include the null word Λ .

Example: The language L of strings of odd length, defined over $\Sigma = \{a\}$, can be written as $L = \{a, aaa, aaaaa,\}$

Example: The language L of strings that does not start with a, defined over $\Sigma = \{a,b,c\}$, can be written as $L = \{b, c, ba, bb, bc, ca, cb, cc, ...\}$

Example: The language L of strings of length 2, defined over $\Sigma = \{0,1,2\}$, can be written as $L = \{00, 01, 02, 10, 11, 12, 20, 21, 22\}$

Example: The language L of strings ending in 0, defined over $\Sigma = \{0,1\}$, can be written as $L = \{0,00,10,000,010,100,110,...\}$

Example: The language **EQUAL**, of strings with number of a's equal to number of b's, defined over $\Sigma = \{a,b\}$, can be written as: $\{\Lambda,ab,aabb,abab,abab,abab,...\}$

Example: The language **EVEN-EVEN**, of strings with even number of a's and even number of b's, defined over $\Sigma = \{a,b\}$, can be written as: $\{\Lambda, aa, bb, aaaa,aabb,abab, abba, baba, baba, bbbb,...\}$

Concatenation:

- Let us define an operation, **concatenation**, in which two strings are written down side by side to form a new longer string.
 - xxx concatenated with xx is the word xxxxx
 - x^n concatenated with x^m is the word x^{n+m}
- For convenience, we may label a word in a given language by a new symbol. For example, xxx is called a, and xx is called b
- Then to denote the word formed by concatenating a and b, we can write ab = xxxxx
- It is not true that when two words are concatenated, they produce another word. For example, if the language is $L_2 = \{x, xxx, xxxxx, ...\} = \{x^{2n+1} \text{ for } n = 0, 1, 2, ...\}$

then a = xxx and b = xxxxx are both words in L_2 , but their concatenation ab = xxxxxxxx is not in L_2

Concatenation makes new Words?

• Note that in this simple example, we have: ab = ba
But in general, this relationship does NOT hold for all languages (e.g., houseboat and boathouse are two different words in English).

Example: Consider another language by beginning with the alphabet

$$\Sigma = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \}$$

Define the language:

 $L_3 = \{$ any finite string of alphabet letters that does not start with the letter zero $\}$

• This language L_3 looks like the set of positive integers:

$$L_3 = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, \dots \}$$

• If we want to define L3 so that it includes the string (word) 0, we could say L₃ = { any finite string of alphabet letters that, if it starts with a 0, has no more letters after the first}

Definition: Length

• We define the function **length** of a string to be the number of letters in the string.

Example:

- -If a = xxxx in the language L_1 , then length(a) = 4
- -If c = 428 in the language L₃, then length(c) = 3
- -If d = 0 in the language L₃, then length(d) = 1
- -In any language that includes the null word Λ , then length(Λ) = 0
- For any word w in any language, if length(w) = 0 then w = Λ .
- Recall that the language L_1 does not contain the null string Λ . Let us define a language like L_1 but that does contain Λ :

$$L_4 = \{ \Lambda, x, xx, xxx, xxxx, ... \} = \{ x^n \text{ for } n = 0, 1, 2, 3, ... \}$$

- Here we have defined that: $x^0 = \Lambda$ (NOT $x^0 = 1$ as in algebra)
- In this way, xⁿ always means the string of n alphabet letters x's.
- Remember that even Λ is a word in the language, it is not a letter in the alphabet.

Definition: Reverse:

• If a is a word in some language L, then **reverse**(a) is the same string of letters spelled backward, even if this backward string is not a word in L.

Example:

- -reverse(xxx) = xxx
- -reverse(145) = 541
- -Note that 140 is a word in L_3 , but reverse(140) = 041 is NOT a word in L_3

Definition: Palindrome:

- Let us define a new language called Palindrome over the alphabet $\Sigma = \{ a, b \}$ PALINDROME = $\{ \Lambda, \text{ and all strings } x \text{ such that } reverse(x) = x \}$
- If we want to list the elements in PALINDROME, we find PALINDROME = $\{ \Lambda, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, \dots \}$

Palindrome

- Sometimes two words in PALINDROME when concatenated will produce a word in PALINDROME
 - -abba concatenated with abbaabba gives abbaabbaabba (in PALINDROME)
- But more often, the concatenation is not a word in PALINDROME
 - −aa concatenated with aba gives aaaba (NOT in PALINDROME)
- The language PALINDROME has interesting properties that we shall examine later.

*Task

Q) Prove that there are as many palindromes of length 2n, defined over $\Sigma = \{a,b,c\}$, as there are of length 2n-1, n = 1,2,3... Determine the number of palindromes of length 2n defined over the same alphabet as well.

Solution

To calculate the number of palindromes of length(2n), consider the following diagram,

- which shows that there are as many palindromes of length 2n as there are the strings of length n *i.e.* the required number of palindromes are 3ⁿ (as there are three letters in the given alphabet, so the number of strings of length n will be 3ⁿ).
- To calculate the number of palindromes of length (2n-1) with a as the middle letter, consider the following diagram,

- Which shows that there are as many palindromes of length 2n-1, with a as middle letter, as there are the strings of length n-1, *i.e.* the required number of palindromes are 3ⁿ⁻¹.
 - Similarly the number of palindromes of length 2n-1, with b or c as middle letter, will be 3^{n-1} as well. Hence the total number of palindromes of length 2n-1 will be: $3^{n-1} + 3^{n-1} + 3^{n-1} = 3 (3^{n-1}) = 3^n$.

***** Kleene Closure

Definition: Given an alphabet Σ , we define a language in which any string of letters from Σ is a word, even the null string Λ . We call this language the **closure** of the alphabet Σ , and denote this language by Σ^* .

```
Examples: If \Sigma = \{x\} then \Sigma^* = \{\Lambda, x, xx, xxx, ...\}
If \Sigma = \{0, 1\} then \Sigma^* = \{\Lambda, 0, 1, 00, 01, 10, 11, 000, 001, ...\}
If \Sigma = \{a, b, c\} then \Sigma^* = \{\Lambda, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, ...\}
```

Lexicographic order

- Notice that we listed the words in a language in size order (i.e., words of shortest length first), and then listed all the words of the same length alphabetically.
- This ordering is called **lexicographic** order, which we will usually follow.
- The star in the closure notation is known as the **Kleene star**.
- We can think of the Kleene star as an **operation** that makes, out of an alphabet, an *infinite* language (i.e., *infinitely many* words, each of *finite* length).

Kleene Closure

• Let us now generalize the use of the Kleene star oprator to sets of words, not just sets of alphabet letters.

Definition: If S is a set of words, then S^* is the set of all finite strings formed by concatenating words from S, where any word may be used as often as we like, and where the null string Λ is also included.

Example: If $S = \{ aa, b \}$ then

 $S^* = \{ \Lambda \text{ plus any word composed of factors of } aa \text{ and } b \}, \text{ or }$

 $S^* = \{ \Lambda \text{ plus any strings of a's and b's in which the a's occur in even clumps } \},$ or

 $S^* = \{ \Lambda, b, aa, bb, aab, baa, bbb, aaaa, aabb, baab, bbaa, bbbb, aaaab, aabaa, aabbb, baaaa, baabb, bbaab, bbbaa, bbbbb, ... \}$

Note that the string aabaaab is not in S* because it has a clump of a's of length 3.

Example: Let $S = \{ a, ab \}$. Then

 $S^* = \{ \Lambda \text{ plus any word composed of factors of a and ab } \}, \text{ or }$

 $S^* = \{ \Lambda \text{ plus all strings of a's and b's except those that start with b and those that contain a double b \}, or$

 $S^* = \{\ \pmb{\Lambda},\ a,\ aa,\ ab,\ aaa,\ aab,\ aba,\ aaaa,\ aaab,\ abaa,\ abab,\ aaaaa,\ aaaba,\ aaaba,\ aaaab,\ ababa,\ \dots \}$

• Note that for each word in S*, every b must have an a immediately to its left, so the double b, that is bb, is not possible; neither any string starting with b.

How to prove a certain word is in the closure language S*

- We must show how it can be written as a concatenation of words from the base set S.
- In the previous example, to show that abaab is in S^* , we can factor it as follows: abaab = (ab)(a)(ab)
- These three factors are all in the set S, therefore their concatenation is in S*.

<u>Note</u> that the parentheses, (), are used for the sole purpose of demarcating the ends of factors.

- Observe that if the alphabet has no letters, then its closure is the language with the null string as its only word; that is
 - if $\sum = \emptyset$ (the empty set), then $\sum^* = \{ \Lambda \}$
- Also, observe that if the set S has the null string as its only word, then the closure language S* also has the null string as its only word; that is

if
$$S = \{ \Lambda \}$$
, then $S^* = \{ \Lambda \}$ because $\Lambda \Lambda = \Lambda$.

• Hence, the Kleene closure always produces an infinite language unless the underlying set is one of the two cases above.

Kleene Closure of different sets

• The Kleene closure of two different sets can end up being the same language.

Example: Consider two sets of words $S = \{a, b, ab\}$ and $T = \{a, b, bb\}$

Then, both S* and T* are languages of all strings of a's and b's since any string of a's and b's can be factored into syllables of (a) or (b), both of which are in S and T.

Positive Closure

- If we wish to modify the concept of closure to refer only the concatenation of **some** (**not zero**) strings from a set S, we use the notation + instead of *.
- This "plus operation" is called **positive closure**.

Example: if
$$\Sigma = \{x\}$$
 then $\Sigma^+ = \{x, xx, xxx, ...\}$

Observe that:

- 1. If S is a language that **does not** contain Λ , then S⁺ is the language S* without the null word Λ .
- 2. If S is a language that **does** contain Λ , then $S^+ = S^*$
- 3. Likewise, if Σ is an alphabet, then Σ^+ is Σ^* without the word Λ .

S**?

- What happens if we apply the closure operator twice?
 - -We start with a set of words S and form its closure S*

-We then start with the set S^* and try to form its closure, which we denote as $(S^*)^*$ or S^{**}

Theorem 1:

For any set S of strings, we have $S^* = S^{**}$

- Before we prove the theorem, recall from Set Theory that
 - -A = B if A is a subset of B and B is a subset of A
 - -A is a subset of B if for all x in A, x is also in B

Proof of Theorem 1:

- Let us first prove that S** is a subset of S*:
 - Every word in S^{**} is made up of factors from S^{*} . Every factor from S^{*} is made up of factors from S. Hence, every word from S^{**} is made up of factors from S. Therefore, every word in S^{**} is also a word in S^{*} . This implies that S^{**} is a subset of S^{*} .
- Let us now prove that S* is a subset of S**:
 In general, it is true that for any set A, we have A is a subset of A*, because in A* we can choose as a word any factor from A. So if we consider A to be our set S* then S* is a subset of S**
- Together, these two inclusions prove that $S^* = S^{**}$.

Example:

Defining language of EVEN

Step 1: 2 is in EVEN.

Step 2: If x is in EVEN then x+2 and x-2 are also in EVEN.

Step 3: No strings except those constructed in above, are allowed to be in **EVEN**.

Example:

Defining the language factorial

Step 1: As 0!=1, so 1 is in **factorial**.

Step 2: n!=n*(n-1)! is in **factorial**.

Step 3: No strings except those constructed in above, are allowed to be in **factorial**.

Defining the language PALINDROME, defined over $\Sigma = \{a,b\}$

Step 1: a and b are in **PALINDROME**

Computational Theory Lecture note Lecturer: Dr Ali Jbaeer Dawood

Step 2: if x is palindrome, then s(x)Rev(s) and xx will also be palindrome, where s belongs to Σ^*

Step 3: No strings except those constructed in above, are allowed to be in palindrome

Defining the language $\{a^nb^n\}$, n=1,2,3,..., of strings defined over $\Sigma = \{a,b\}$

Step 1: ab is in $\{a^nb^n\}$

Step 2: if x is in $\{a^nb^n\}$, then axb is in $\{a^nb^n\}$

Step 3: No strings except those constructed in above, are allowed to be in $\{a^nb^n\}$

Defining the language L, of strings ending in a, defined over $\Sigma = \{a,b\}$

Step 1: a is in L

Step 2: if x is in L then s(x) is also in L, where s belongs to Σ^*

Step 3: No strings except those constructed in above, are allowed to be in L

Defining the language L, of strings beginning and ending in same letters , defined over $\Sigma = \{a, b\}$

Step 1: a and b are in L

Step 2: (a)s(a) and (b)s(b) are also in L, where s belongs to Σ^*

Step 3: No strings except those constructed in above, are allowed to be in L

Defining the language L, of strings containing aa or bb, defined over $\Sigma = \{a, b\}$

Step 1: aa and bb are in L

Step 2: s(aa)s and s(bb)s are also in **L**, where s belongs to Σ^*

Step 3: No strings except those constructed in above, are allowed to be in L

Defining the language L, of strings containing exactly aa, defined over $\Sigma = \{a, b\}$

Step 1: aa is in L

Step 2: s(aa)s is also in L, where s belongs to b*

Step 3: No strings except those constructed in above, are allowed to be in L