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Lecture one Lecturer: Dr Ali Jbaeer Dawood
Theory of Computational
Languages

e In English, we distinguish 3 different entities: letters, words, and sentences.
—Groups of letters make up words and groups of words make up sentences.
—However, not all collections of letters form valid words, and not all collections

of words form valid sentences.

This situation also exists with computer languages.

—Certain (but not all) strings of characters are recognizable words (e.g., IF, ELSE,
FOR, WHILE ...); and certain (but not all) strings of words are recognizable
commands.

e To construct a general theory of formal languages, we need to have a definition
of a language structure, in which the decision of whether a given string of units
constitutes a valid larger unit is not a matter of guesswork, but is based on
explicitly stated rules.

e In this model, language will be considered as symbols with formal rules, and not
as expressions of ideas in the minds of humans.

e The term “formal” emphasizes that it is the form of the string of symbols that

we are interested in, not the meaning.

Basic Definitions
Alphabet : A finite non-empty set of symbols (letters), is called an alphabet. It is
denoted by X ( Greek letter sigma).
Example: ¥={a,b}
>={0,1} //important as this is the language //which the computer understands.
>={i,j,k}
Strings: Concatenation of finite symbols from the alphabet is called a string.
Example: IfX= {a,b} then a, abab, aaabb, ababababababababab
Words: Words are strings belonging to some language.

Example: If Z= {x} then a language L can be defined as
L={x":n=1,2.3,.....} or L={X,XX,XXX,....}
Here x,xx,... are the words of L

(All words are strings, but not all strings are words).

EMPTY STRING or NULL STRING

e We shall allow a string to have no letters. We call this empty string or null
string, and denote it by the symbol A.
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e For all languages, the null word, if it is a word in the language, is the word that
has no letters. We also denote the null word by A.

e Two words are considered the same if all their letters are the same and in the
same order.

e For clarity, we usually do not allow the symbol A to be part of the alphabet of
any language.

Discussion of null
e The language that has no words is denoted by the standard symbol for null set, o.
e It is not true that A is a word in the language ¢ since this language has no words
at all.
e [f a certain language L does not contain the word A and we wish to add it to L,
we use the operation “+” to form L + {A}. This language is not the same as L.

e However, the language L + ¢ is the same as L since no new words have been
added.

Introduction to Defining L.anguages

e The rules for defining a language can be of two kinds:
—They can tell us how to test if a string of alphabet letters is a valid word, or
—They can tell us how to construct all the words in the language by some clear
procedures.
Defining L.anguages
Example: Consider this alphabet with only one letter ). = { x }

e We can define a language by saying that any nonempty string of alphabet letters
isaword L;={Xx, XX, XXX, XXXX, ... jorL;={x"forn=1,2,3,... }

Note that because of the way we have defined it, the language L; does not include

the null word A.

Example: The language L of strings of odd length, defined over X={a}, can be
written as L={a, aaa, aaaaa,.....}

Example: The language L of strings that does not start with a, defined over
Y={a,b,c}, can be written as L={b, c, ba, bb, bc, ca, cb, cc, ...}

Example: The language L of strings of length 2, defined over ¥={0,1,2}, can be
written as  L={00, 01, 02,10, 11,12,20,21,22}

Example:The language L of strings ending in 0, defined over X ={0,1}, can be
writtenas ~ [L={0,00,10,000,010,100,110,...}
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Example:The language EQUAL, of strings with number of a’s equal to number of
b’s, defined over X={a,b}, can be written as: {A ,ab,aabb,abab,baba,abba,...}

Example: The language EVEN-EVEN, of strings with even number of a’s and
even number of b’s, defined over £={a,b}, can be written as: {A, aa, bb,
aaaa,aabb,abab, abba, baab, baba, bbaa, bbbb,...}

Concatenation:
e et us define an operation, concatenation, in which two strings are written down
side by side to form a new longer string.
xxx concatenated with xx is the word xxxxx

n+m

X" concatenated with x™ is the word x
e For convenience, we may label a word in a given language by a new symbol. For
example, xxx is called a, and xx is called b
e Then to denote the word formed by concatenating a and b, we can write ab =
XXXXX
e [t is not true that when two words are concatenated, they produce another word.
For example, if the language is L, = {x, Xxx, XXXXX, ...} = {x2n+1 forn=0, 1, 2,
.}
then a = xxx and b = xxxxx are both words in L,, but their concatenation
ab = xxxxxxxx is not in L,

Concatenation makes new Words?

¢ Note that in this simple example, we have: ab = ba
But in general, this relationship does NOT hold for all languages (e.g.,
houseboat and boathouse are two different words in English).
Example: Consider another language by beginning with the alphabet
>=1{0,1,2,3,4,5,6,7,8,9 }
Define the language:
L; = { any finite string of alphabet letters that does not start with the letter zero }

e This language L; looks like the set of positive integers:
L;=1{1,2,3,4,5,6,7,8,9,10,11,12, ... }
e [f we want to define L3 so that it includes the string (word) 0, we could say
L; = { any finite string of alphabet letters that, if it starts with a 0, has no more
letters after the first}

Definition: Length
e We define the function length of a string to be the number of letters in the string.
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Example:
—If a = xxxx in the language L, then length(a) =4

—1If ¢ = 428 in the language L;, then length(c) = 3

—If d = 0 in the language L3, then length(d) =1

—In any language that includes the null word A, then length(A) =0
e For any word w in any language, if length(w) = 0 then w = A.

Recall that the language L; does not contain the null string A. Let us define a
language like L; but that does contain A:

Ls={ A, X, XX, XXX, XXXX, ... } ={X forn=0,1,2,3,...}

Here we have defined that: x’=A (NOT x” =1 as in algebra)

In this way, X" always means the string of n alphabet letters x’s.

Remember that even A is a word in the language, it is not a letter in the alphabet.

Definition: Reverse:

e If a is a word in some language L, then reverse(a) is the same string of letters
spelled backward, even if this backward string is not a word in L.
Example:
—reverse(Xxx) = XXx
—reverse(145) = 541
—Note that 140 is a word in L3, but reverse(140) = 041 is NOT a word in L;

Definition: Palindrome:

e Let us define a new language called Palindrome over the alphabet > = { a, b }
PALINDROME = { A, and all strings x such that reverse(x) =x }
e |f we want to list the elements in PALINDROME, we find
PALINDROME = { A, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, ... }
Palindrome
e Sometimes two words in PALINDROME when concatenated will produce a
word in PALINDROME
—abba concatenated with abbaabba gives abbaabbaabba (in PALINDROME)
e But more often, the concatenation is not a word in PALINDROME
—aa concatenated with aba gives aaaba (NOT in PALINDROME)
e The language PALINDROME has interesting properties that we shall examine
later.
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s Task

Q) Prove that there are as many palindromes of length 2n, defined over £ = {a,b,c}, as
there are of length 2n-1, n = 1,2,3... . Determine the number of palindromes of length
2n defined over the same alphabet as well.

Solution

To calculate the number of palindromes of length(2n), consider the following diagram,
| 2n

|
I |
— ]

e which shows that there are as many palindromes of length 2n as there are the
strings of length n i.e. the required number of palindromes are 3" (as there are
three letters in the given alphabet, so the number of strings of length n will be
3.

e To calculate the number of palindromes of length (2n-1) with a as the middle

letter, consider the following diagram,
n-1

n-1 n-1

e Which shows that there are as many palindromes of length 2n-1, with a as middle
letter, as there are the strings of length n-1, i.e. the required number of
palindromes are 3™".

Similarly the number of palindromes of length 2n-1, with b or ¢ as middle

letter, will be 3" as well. Hence the total number of palindromes of length 2n-1
will be:  3™'+3™+ 3™ =3 (3")=3".

¢ Kleene Closure
Definition: Given an alphabet ), we define a language in which any string of letters
from ) is a word, even the null string A. We call this language the closure of the

alphabet ), and denote this language by > *.
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Examples: If > = { x } then Y * = { A, X, XX, XXX, ... }
If>=4{0,1}then)*={A,0,1,00,01, 10, 11, 000, 001, ... }
If> ={a,b,c}then)*={A, ab,c,aa,ab, ac, ba, bb, bc, ca, cb, cc, aaa, ... }

Lexicographic order

e Notice that we listed the words in a language in size order (i.e., words of shortest
length first), and then listed all the words of the same length alphabetically.

e This ordering is called lexicographic order, which we will usually follow.

e The star in the closure notation is known as the Kleene star.

e We can think of the Kleene star as an operation that makes, out of an alphabet,
an infinite language (i.e., infinitely many words, each of finite length).

Kleene Closure

e Let us now generalize the use of the Kleene star oprator to sets of words, not just
sets of alphabet letters.

Definition: If S is a set of words, then S* is the set of all finite strings formed by
concatenating words from S, where any word may be used as often as we like,
and where the null string A is also included.

Example: If S = { aa, b } then
S* = { A plus any word composed of factors of aaandb }, or
S* = { A plus any strings of a’s and b’s in which the a’s occur in even clumps },

or

S* = { A, b, aa, bb, aab, baa, bbb, aaaa, aabb, baab, bbaa, bbbb, aaaab, aabaa,
aabbb, baaaa, baabb, bbaab, bbbaa, bbbbb, ... }

Note that the string aabaaab is not in S* because it has a clump of a’s of length 3.

Example: Let S = { a, ab }. Then
S* = { A plus any word composed of factors of a and ab }, or
S* = { A plus all strings of a’s and b’s except those that start with b and those

that contain a double b }, or
S* = { A, a, aa, ab, aaa, aab, aba, aaaa, aaab, abaa, abab, aaaaa, aaaab, aaaba,
aabaa, aabab, abaaa, abaab, ababa, ... }
e Note that for each word in S*, every b must have an a immediately to its left, so
the double b, that is bb, is not possible; neither any string starting with b.
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How to prove a certain word is in the closure language S*

e We must show how it can be written as a concatenation of words from the base
set S.
¢ In the previous example, to show that abaab is in S*, we can factor it as follows:
abaab = (ab)(a)(ab)
e These three factors are all in the set S, therefore their concatenation is in S*.
Note that the parentheses, ( ), are used for the sole purpose of demarcating the ends of
factors.
e Observe that if the alphabet has no letters, then its closure is the language with
the null string as its only word; that is
if )° = o (the empty set), then D> * = { A }
e Also, observe that if the set S has the null string as its only word, then the closure
language S* also has the null string as its only word; that is
ifS={A},thenS*={A} Dbecause AA =A.
e Hence, the Kleene closure always produces an infinite language unless the
underlying set is one of the two cases above.

Kleene Closure of different sets

e The Kleene closure of two different sets can end up being the same language.
Example: Consider two sets of words S={a,b,ab } and T={ a, b, bb }
Then, both S* and T* are languages of all strings of a’s and b’s since any string
of a’s and b’s can be factored into syllables of (a) or (b), both of which are in S
and T.
Positive Closure

e [f we wish to modify the concept of closure to refer only the concatenation of
some (not zero) strings from a set S, we use the notation + instead of *.
e This “plus operation” is called positive closure.
Example: if Y = { x } then Y" = { x, XX, XXX, ... }
Observe that:
1. If S is a language that does not contain A, then S* is the language S* without the
null word A.
2. If S is a language that does contain A, then S* = S*

3. Likewise, if ¥ is an alphabet, then Y is 3 * without the word A.
S**?

e What happens if we apply the closure operator twice?
— We start with a set of words S and form its closure S*
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—We then start with the set S* and try to form its closure, which we denote as
(S*)* or S**

Theorem 1:
For any set S of strings, we have S* = S**
e Before we prove the theorem, recall from Set Theory that
—A =B if A is a subset of B and B is a subset of A
—A isasubset of B if forall x in A, x is alsoin B
Proof of Theorem 1:

e Let us first prove that S** is a subset of S*:
Every word in S** is made up of factors from S*. Every factor from S* is made
up of factors from S. Hence, every word from S** is made up of factors from S.
Therefore, every word in S** is also a word in S*. This implies that S** is a
subset of S*.

e Let us now prove that S* is a subset of S**:
In general, it is true that for any set A, we have A is a subset of A*, because in
A* we can choose as a word any factor from A. So if we consider A to be our set
S* then S* is a subset of S**

e Together, these two inclusions prove that S* = S**,

Example:
Defining language of EVEN

Step 1: 2 isin EVEN.
Step 2: If x is in EVEN then x+2 and x-2 are also in EVEN.
Step 3: No strings except those constructed in above, are allowed to be in EVEN.

Example:
Defining the language factorial

Step 1: As 0!=1, so 1 is in factorial.
Step 2: n!=n*(n-1)! is in factorial.
Step 3: No strings except those constructed in above, are allowed to be in factorial.

Defining the language PALINDROME, defined over X = {a,b}
Step 1: a and b are in PALINDROME

Page 8 of 9



ANBAR UNIVERSITY/COLLEGE OF COMPUTER  2012-2013 Computational Theory Lecture note
Lecture one Lecturer: Dr Ali Jhaeer Dawood

Step 2: if x is palindrome, then s(x)Rev(s) and xx will also be palindrome, where s
belongs to 3
Step 3: No strings except those constructed in above, are allowed to be in palindrome

Defining the language {a"b"}, n=1,2,3.... , of strings defined over X={a,b}
Step 1: ab is in {a"b"}

Step 2: if x is in {a"b"}, then axb is in {a"b"}

Step 3: No strings except those constructed in above, are allowed to be in {a"b"}

Defining the language L, of strings ending in a , defined over X={a,b}
Step l:aisinL

Step 2: if x is in L then s(x) is also in L, where s belongs to X

Step 3: No strings except those constructed in above, are allowed to be in L

Defining the language L, of strings beginning and ending in same letters , defined
over X={a, b}

Step l:aandbarein L

Step 2: (a)s(a) and (b)s(b) are also in L, where s belongs to >

Step 3: No strings except those constructed in above, are allowed to be in L

Defining the language L, of strings containing aa or bb , defined over  X={a, b}
Step 1: aa and bb are in L

Step 2: s(aa)s and s(bb)s are also in L, where s belongs to >

Step 3: No strings except those constructed in above, are allowed to be in L

Defining the language L, of strings containing exactly aa, defined over X={a, b}
Step 1: aaisin L

Step 2: s(aa)s is also in L, where s belongs to b

Step 3: No strings except those constructed in above, are allowed to be in L
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