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Theory of Computational 
Languages 
 In English, we distinguish 3 different entities: letters, words, and sentences. 

– Groups of letters make up words and groups of words make up sentences. 
– However, not all collections of letters form valid words, and not all collections 

of words form valid sentences. 

 This situation also exists with computer languages. 
– Certain (but not all) strings of characters are recognizable words (e.g., IF, ELSE, 

FOR, WHILE …); and certain (but not all) strings of words are recognizable 
commands.  

 To construct a general theory of formal languages, we need to have a definition 
of a language structure, in which the decision of whether a given string of units 
constitutes a valid larger unit is not a matter of guesswork, but is based on 
explicitly stated rules. 

 In this model, language will be considered as symbols with formal rules, and not 
as expressions of ideas in the minds of humans. 

 The term “formal” emphasizes that it is the form of the string of symbols that 
we are interested in, not the meaning. 

 
Basic Definitions 
Alphabet : A finite non-empty set of symbols (letters), is called an  alphabet. It is 

denoted by Σ ( Greek letter sigma). 
Example: Σ={a,b} 

 Σ={0,1} //important as this is the language   //which the computer understands. 
 Σ={i,j,k} 
Strings:  Concatenation of finite symbols from the alphabet is called a string.  

Example:    If Σ= {a,b} then        a, abab, aaabb, ababababababababab  
Words: Words are strings belonging to some language. 

Example:  If Σ= {x} then a language L can be defined as  
   L={xn : n=1,2,3,…..} or L={x,xx,xxx,….} 
   Here x,xx,… are the words of L 

(All words are strings, but not all strings are words). 
 
EMPTY STRING or NULL STRING 

 We shall allow a string to have no letters. We call this empty string or null 
string, and denote it by the symbol Λ. 
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 For all languages, the null word, if it is a word in the language, is the word that 
has no letters. We also denote the null word by Λ. 

 Two words are considered the same if all their letters are the same and in the 
same order. 

 For clarity, we usually do not allow the symbol Λ to be part of the alphabet of 
any language.  

 
Discussion of null 

 The language that has no words is denoted by the standard symbol for null set, ø. 

 It is not true that Λ is a word in the language ø since this language has no words 
at all. 

 If a certain language L does not contain the word Λ and we wish to add it to L, 
we use the operation “+” to form L + {Λ}. This language is not the same as L. 

 However, the language L + ø is the same as L since no new words have been 
added. 

 
Introduction to Defining Languages 

 The rules for defining a language can be of two kinds: 
– They can tell us how to test if a string of alphabet letters is a valid word, or 
– They can tell us how to construct all the words in the language by some clear 

procedures. 
–  

Defining Languages 
Example: Consider this alphabet with only one letter ∑ = { x } 

 We can define a language by saying that any nonempty string of alphabet letters 
is a word     L1 = { x, xx, xxx, xxxx, … } or L1 = { xn for n = 1, 2, 3, … } 

Note that because of the way we have defined it, the language L1 does not include 
the null word Λ. 
Example: The language L of strings of odd length, defined over Σ={a}, can be 

written as  L={a, aaa, aaaaa,…..} 
Example:  The language L of strings that does not start with a, defined over 
Σ={a,b,c}, can be written as L={b, c, ba, bb, bc, ca, cb,  cc, …} 

Example: The language L of strings of length 2, defined over Σ={0,1,2}, can be 
written as      L={00, 01, 02,10, 11,12,20,21,22} 

Example:The language L of strings ending in 0, defined over  Σ ={0,1}, can be 
written as   L={0,00,10,000,010,100,110,…} 
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Example:The language EQUAL, of strings with number of a’s equal to number of 
b’s, defined over Σ={a,b}, can be written as:  {Λ ,ab,aabb,abab,baba,abba,…} 

Example: The language EVEN-EVEN, of strings with even number of a’s and 
even number of b’s, defined over Σ={a,b}, can be written as:  {Λ, aa, bb, 
aaaa,aabb,abab, abba, baab, baba, bbaa, bbbb,…}  

 
Concatenation:  

 Let us define an operation, concatenation, in which two strings are written down 
side by side to form a new longer string. 

 xxx concatenated with xx is the word xxxxx  
 xn concatenated with xm is the word xn+m  

 For convenience, we may label a word in a given language by a new symbol. For 
example, xxx is called a, and xx is called b 

 Then to denote the word formed by concatenating a and b, we can write ab = 
xxxxx  

 It is not true that when two words are concatenated, they produce another word. 
For example, if the language is L2 = {x, xxx, xxxxx, …} = {x2n+1 for n = 0, 1, 2, 
…} 

then a = xxx and b = xxxxx are both words in L2, but their concatenation  
              ab = xxxxxxxx is not in L2 

 
Concatenation makes new Words? 

 Note that in this simple example, we have:     ab = ba  
But in general, this relationship does NOT hold for all languages (e.g., 
houseboat and boathouse are two different words in English). 

Example: Consider another language by beginning with the alphabet 
 ∑ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }  
Define the language: 
 L3 = { any finite string of alphabet letters that does not start with the letter zero } 

 This language L3 looks like the set of positive integers: 
 L3 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, … } 

 If we want to define L3 so that it includes the string (word) 0, we could say 
 L3 = { any finite string of alphabet letters that, if it starts with a 0, has no more 

letters after the first} 
 
Definition: Length 

 We define the function length of a string to be the number of letters in the string. 
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Example: 
– If a = xxxx in the language L1, then length(a) = 4 
– If c = 428 in the language L3, then length(c) = 3 
– If d = 0 in the language L3, then length(d)  = 1 
– In any language that includes the null word Λ, then length(Λ) = 0 

 For any word w in any language, if length(w) = 0 then w = Λ.  

 Recall that the language L1 does not contain the null string Λ. Let us define a 
language like L1 but that does contain Λ: 

 L4 = { Λ, x, xx, xxx, xxxx, … }   = { xn for n = 0, 1, 2, 3, … } 

 Here we have defined that: x0 = Λ (NOT x0 = 1 as in algebra) 

 In this way, xn always means the string of n alphabet letters x’s. 

 Remember that even Λ is a word in the language, it is not a letter in the alphabet.  
 
Definition: Reverse: 

 If a is a word in some language L, then reverse(a) is the same string of letters 
spelled backward, even if this backward string is not a word in L. 

Example: 
– reverse(xxx) = xxx 
– reverse(145) = 541 
– Note that 140 is a word in L3, but reverse(140) = 041 is NOT a word in L3 

 
Definition: Palindrome: 

 Let us define a new language called Palindrome over the alphabet ∑ = { a, b } 
 PALINDROME = { Λ, and all strings x such that     reverse(x) = x } 

 If we want to list the elements in PALINDROME, we find 
 PALINDROME = { Λ, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, abba, … }  
Palindrome 

 Sometimes two words in PALINDROME when concatenated will produce a 
word in PALINDROME 

– abba concatenated with abbaabba gives abbaabbaabba (in PALINDROME) 

 But more often, the concatenation is not a word in PALINDROME 
– aa concatenated with aba gives aaaba (NOT in PALINDROME) 

 The language PALINDROME has interesting properties that we shall examine 
later. 
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 Task 
Q) Prove that there are as many palindromes of length 2n, defined over  Σ = {a,b,c}, as 

there are of length 2n-1, n = 1,2,3… . Determine the number of palindromes of length 
2n defined over the same alphabet as well.   
Solution 
To calculate the number of palindromes of  length(2n), consider the following diagram,  

 
 which shows that there are as many palindromes of length 2n as there are the 

strings of length n i.e. the required number of palindromes are 3n (as there are 
three letters in the given alphabet, so the number of strings of length n will be 
3n).  

 To calculate the number of palindromes of length (2n-1) with a as the middle 
letter, consider the following diagram, 

 
 Which shows that there are as many palindromes of length 2n-1, with a as middle 

letter, as there are the strings of length n-1, i.e. the required number of 
palindromes are 3n-1. 
Similarly the number of palindromes of length 2n-1, with  b  or c  as middle 
letter, will be 3n-1 as well. Hence the total number of palindromes of length 2n-1 
will be:    3n-1 + 3n-1 + 3n-1 = 3 (3n-1)= 3n . 

 
 Kleene Closure 
Definition: Given an alphabet ∑, we define a language in which any string of letters 

from ∑ is a word, even the null string Λ. We call this language the closure of the 
alphabet ∑, and denote this language by ∑*. 
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Examples: If ∑ = { x } then ∑* = { Λ, x, xx, xxx, … }  
 If ∑ = { 0, 1 } then ∑* = { Λ, 0, 1, 00, 01, 10, 11, 000, 001, … }  
 If ∑ = { a, b, c } then ∑* = { Λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, … }  
 
Lexicographic order 

 Notice that we listed the words in a language in size order (i.e., words of shortest 
length first), and then listed all the words of the same length alphabetically. 

 This ordering is called lexicographic order, which we will usually follow. 

 The star in the closure notation is known as the Kleene star. 

 We can think of the Kleene star as an operation that makes, out of an alphabet, 
an infinite language (i.e., infinitely many words, each of finite length). 

 
Kleene Closure 

 Let us now generalize the use of the Kleene star oprator to sets of words, not just 
sets of alphabet letters. 

Definition: If S is a set of words, then S* is the set of all finite strings formed by 
concatenating words from S, where any word may be used as often as we like, 
and where the null string Λ is also included.  

Example: If S = { aa, b } then 
 S* = { Λ plus any word composed of factors of    aa and b }, or 

 S* = { Λ plus any strings of a’s and b’s in which the a’s occur in even clumps }, 
or 
S* = { Λ, b, aa, bb, aab, baa, bbb, aaaa, aabb, baab, bbaa, bbbb, aaaab, aabaa, 

aabbb, baaaa, baabb, bbaab, bbbaa, bbbbb, … } 
 Note that the string aabaaab is not in S* because it has a clump of a’s of length 3.  
Example: Let S = { a, ab }. Then 
 S* = { Λ plus any word composed of factors of a and ab }, or 

S* = { Λ plus all strings of a’s and b’s except those that start with b and those 
that contain a double b }, or 

S* = { Λ, a, aa, ab, aaa, aab, aba, aaaa, aaab, abaa, abab, aaaaa, aaaab, aaaba, 
aabaa, aabab, abaaa, abaab, ababa, … } 

 Note that for each word in S*, every b must have an a immediately to its left, so 
the double b, that is bb, is not possible; neither any string starting with b.  
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How to prove a certain word is in the closure language S* 

 We must show how it can be written as a concatenation of words from the base 
set S. 

 In the previous example, to show that abaab is in S*, we can factor it as follows: 
 abaab = (ab)(a)(ab) 

 These three factors are all in the set S, therefore their concatenation is in S*. 
Note that the parentheses, ( ), are used for the sole purpose of demarcating the ends of 

factors. 

 Observe that if the alphabet has no letters, then its closure is the language with 
the null string as its only word; that is 

 if ∑ = ø (the empty set), then ∑* = { Λ } 

 Also, observe that if the set S has the null string as its only word, then the closure 
language S* also has the null string as its only word; that is 

 if S = { Λ }, then S* = { Λ } because ΛΛ = Λ. 

 Hence, the Kleene closure always produces an infinite language unless the 
underlying set is one of the two cases above.  

 
Kleene Closure of different sets 

 The Kleene closure of two different sets can end up being the same language. 
Example: Consider two sets of words S = { a , b, ab } and T = { a, b, bb } 
 Then, both S* and T* are languages of all strings of a’s and b’s since any string 

of a’s and b’s can be factored into syllables of (a) or (b), both of which are in S 
and T. 

Positive Closure 

 If we wish to modify the concept of closure to refer only the concatenation of 
some (not zero) strings from a set S, we use the notation + instead of *. 

 This “plus operation” is called positive closure. 
Example: if ∑ = { x } then ∑+ = { x, xx, xxx, … }   
Observe that: 

1. If S is a language that does not contain Λ, then S+ is the language S* without the 
null word Λ. 

2. If S is a language that does contain Λ, then S+ = S* 
3. Likewise, if ∑ is an alphabet, then ∑+ is ∑* without the word Λ.  

S**? 

 What happens if we apply the closure operator twice? 
– We start with a set of words S and form its closure S* 
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– We then start with the set S* and try to form its closure, which we denote as 
(S*)* or S** 

 
Theorem 1: 
 For any set S of strings, we have S* = S** 

 Before we prove the theorem, recall from Set Theory that 
– A = B if A is a subset of B and B is a subset of A 
– A is a subset of B if for all x in A, x is also in B 

Proof of Theorem 1: 

 Let us first prove that S** is a subset of S*: 
Every word in S** is made up of factors from S*. Every factor from S* is made 
up of factors from S. Hence, every word from S** is made up of factors from S. 
Therefore, every word in S** is also a word in S*. This implies that S** is a 
subset of S*. 

 Let us now prove that S* is a subset of S**: 
 In general, it is true that for any set A, we have A is a subset of A*, because in 

A* we can choose as a word any factor from A. So if we consider A to be our set 
S* then S* is a subset of S** 

 Together, these two inclusions prove that S* = S**. 
 
Example: 
Defining language of EVEN 
Step 1:  2 is in EVEN. 
Step 2: If x is in EVEN then x+2 and x-2 are also in EVEN.  
Step 3: No strings except those constructed in above, are allowed to be in EVEN. 
 
Example: 
Defining the language factorial 
Step 1: As 0!=1, so 1 is in factorial. 
Step 2: n!=n*(n-1)! is in factorial. 
Step 3: No strings except those constructed in above, are allowed to be in factorial. 
 
 
 
Defining the language PALINDROME, defined over Σ = {a,b}  
Step 1: a and b are in PALINDROME 
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Step 2: if x is palindrome, then s(x)Rev(s) and xx will also be palindrome, where s 
belongs to Σ* 

Step 3: No strings except those constructed in above, are allowed to be in palindrome  
 
Defining the language {anbn }, n=1,2,3,… , of strings defined over Σ={a,b} 
Step 1: ab is in {anbn}  
Step 2: if x is in {anbn}, then axb is in {anbn}  
Step 3: No strings except those constructed in above, are allowed to be in {anbn} 
 
Defining the language L, of strings ending in a , defined over  Σ={a,b} 
Step 1: a is in L  
Step 2: if x is in L then s(x) is also in L, where s belongs to Σ*  
Step 3: No strings except those constructed in above, are allowed to be in L 
 
Defining the language L, of strings beginning and ending in same letters , defined 

over  Σ={a, b} 
Step 1: a and b are in L  
Step 2: (a)s(a) and (b)s(b) are also in L, where s belongs to Σ*  
Step 3: No strings except those constructed in above, are allowed to be in L 
 
Defining the language L, of strings containing aa or bb , defined over       Σ={a, b} 
Step 1: aa and bb are in L  
Step 2: s(aa)s and s(bb)s are also in L, where s belongs to Σ*  
Step 3: No strings except those constructed in above, are allowed to be in L 
 
Defining the language L, of strings containing exactly aa, defined over   Σ={a, b} 
Step 1: aa is in L  
Step 2: s(aa)s is also in L, where s belongs to b*  
Step 3: No strings except those constructed in above, are allowed to be in L 
 


