University of Anbar
 Logic Design

College of Computer Science
 Department of Information System
and Information Technology
 Muntaser Abdulwahed Salman

4.1 Signal Naming Conventions

So far in our discussion, we have always used the words “high” and “low” to mean a 1 or 0, or “on” or “off” respectively. However, this is somewhat arbitrary, and there is no reason why we can’t say a 0 is a high, or a 1 is off. In fact, many standard off-the-shelf components use what we call negative logic where a 0 is for on, and 1 is for off. Using negative logic is usually more difficult to understand because we are used to positive logic where a 1 is for on, and 0 is for off. In all our discussions, we will use the more natural positive logic that we are familiar with. Nevertheless, in order to prevent any confusion as to whether we are using positive logic or negative logic, we often use the words “assert,” “de-assert,” “active-high,” and “active-low.” Regardless of whether we are using positive or negative logic, active-high always means that a high is a 1 and that this 1 will cause the signal to be active or enabled, and a 0 will cause the signal to be inactive or disabled. For example, if there is an active-high signal called add, and we want to enable it, i.e. to make it do what it is intended for, which in this case is to add something, then we need to set this signal line to a 1. Setting this signal to a 0, on the other hand, will cause this signal to be disabled or inactive. An active-low signal, on the other hand, means that a 0 will cause the signal to be active or enabled and a 1 will cause the signal to be disabled. So if the signal add is an active-low signal, then we need to set it to 0 to make it add something.

4.2 Adder

4.2.1 Full Adder

To construct an adder for adding two binary numbers, X = xn-1 … x0 and Y = yn-1 … y0, we need to first consider the addition of a single bit slice xi with yi, together with the carry-in bit ci from the previous bit position on the right. The result from this addition is a sum bit si, and a carry-out bit ci+1 for the next bit position. In other words, si = xi + yi + ci, and ci+1 = 1 if there is a carry from the addition to the next bit on the left. Note that the + operator in this equation is addition and not the logical OR.[image: image1.png]

 For example, consider the following addition of the two 4-bit binary numbers, X = 1001 and Y = 0011

The result of the addition is 1100. The addition is performed just like for decimal numbers except that there is a carry whenever the sum is either a 2 or a 3 in decimal, since 2 is 10 in binary and 3 is 11. The most significant bit in the 10 or the 11 is the carry-out bit. Looking at the bit-slice that is highlighted in blue where x1 = 0, y1 = 1, and c1 = 1, the addition for this bit-slice is x1 + y1 + c1 = 0 + 1 + 1 = 10. Therefore, the sum bit s1 = 0, and the carry-out bit c2 = 1.

The circuit for the addition of a single bit slice is known as a full adder (FA), and its truth table is shown in Figure 4.1 (a). The derivation of the equations for si and ci+1 are shown in Figure 4.1 (b). From these two equations, we get the circuit for the full adder as shown in Figure 4.1 (c). Figure 4.1 (d) shows the logic symbol for it. The full adder is shown in Figure 4.2.

[image: image2.png](@

Figure 4.1. Full adder:
(a) truth table; (b) equations for si and ci+1; (c) circuit; (d) logic symbol.
1
2
‏21‏/11‏/2019[image: image3.png]S ey X s
e xge ey
- (0 yger+ (6 By
-5®y 8¢
L e]
= Ne €) + e xp)
it eln @)

(b)

[image: image4.png]

[image: image5.png]e

