University of Anbar
 Logic Design

College of Computer Science
 Department of Information System
and Information Technology
 Muntaser Abdulwahed Salman

5.6 Using ROMs to Implement a Function

Memory is used for storing binary data. This stored data, however, can be interpreted as being the implementation of a combinational circuit. A combinational circuit expressed as a Boolean function in canonical form is implemented in the memory by storing data bits in appropriate memory locations. Any type of memory, such as ROM (read-only memory), RAM (random access memory), PROM (programmable ROM), EPROM (erasable PROM), EEPROM (electrically erasable PROM), and so on, can be used to implement combinational circuits. Of course, non-volatile memory is preferred since you do want your circuit to stay intact even after power is removed.

In order to understanding how combinational circuits are implemented in ROMs, we need to first understand the internal circuitry of the ROM. ROM circuit diagrams are drawn more concisely by the use of a new logic symbol to represent a logic gate. Figure 5.17 shows the new logic symbol for an AND gate and an OR gate with multiple inputs. Instead of having multiple input lines drawn to the gate, the input lines are replaced with just one line going to the gate. The multiple input lines are drawn perpendicular to this one line. To actually connect an input line to the gate, an explicit connection point () must be drawn at where the two lines cross. For example, in Figure 5.17 (a) the AND gate has only two inputs, whereas, in (b) the OR gate has three inputs.
[image: image1.png]@

Figure 5.17. Array logic symbol for: (a) AND gate; (b) OR gate.

[image: image2.png]OR array

41010

ey

1o
b

[image: image3.png]ORarray

! F

a4y
41016
ay—| o
4, 1
)
12
13
1]

13

(b

Figure 5.18. Internal circuit for a 16 X4 ROM:
(a) with no connections made; (b) with connections made.

The circuit diagram for a 16x4 ROM having 16 locations, each being 4-bits wide, is shown in Figure 5.18 (a). A 4-to-16 decoder is used to decode the four address lines, A3, A2, A1, and A0, to the 16 unique locations. Each output of the decoder is a location in the memory. Recall that the decoder operation is such that when a certain address is presented, the output having the index of the binary address value will have a 1 while the rest of the outputs will have a 0.

Four OR gates provide the four bits of data output for each memory location. The area for making the connections between the outputs of the decoder with the inputs of the OR gates is referred to as the OR array. When no connections are made, the OR gates will always output a 0 regardless of the address input. With connections made as in Figure 5.18 (b), the data output of the OR gates depends on the address selected. For the circuit in Figure 5.18 (b), if the address input is 0000, then the decoder output line 0 will have a 1. Since there are no connections made between the decoder output line 0 and any of the four OR gate inputs, the four OR gates will output a 0. Therefore, the data stored in location 0 is 0000 in binary. If the address input is 0001, then the decoder output line 1 will have a 1. Since this line is connected to the inputs of the two OR gates for D1 and D0, therefore, D1 and D0, will both have a 1 while D3 and D2 will both have a 0. Hence, the data stored in location 1 is 0011. In the circuit of Figure 5.18 (b) the value stored in location 2 is 1101.

A 16x4 ROM can be used to implement a 4-variable Boolean function as follows. The four variables are the inputs to the four address lines of the ROM. The 16 decoded locations become the 16 possible minterms for the 4-variable function. For each 1-minterm in the function, we make a connection between that corresponding decoder output line that matches that minterm number with the input of an OR gate. It does not matter which OR gate is used as long as one OR gate is used to implement one function. Hence, up to four functions with a total of four variables can be implemented in a 16x4 ROM such as the one shown in Figure 5.18 (a). Larger size ROMs, of course, can implement larger and more functions.
From Figure 5.18 (b), we can conclude that the function associated with the OR gate output D0 is F = ∑(1,2). That is, minterms 1 and 2 are the 1-minterms for this function while the rest of the minterms are the 0-minterms. Similarly, the function for D1 has only minterm 1 as its 1-minterms. The functions for D2 and D3 both have only minterm 2 as its 1-minterms. ROMs are programmed during the manufacturing process and cannot be programmed afterwards. As a result, using ROMs to implement a function is only cost effective if a large enough quantity is needed. For small quantities, EPROMs or EEPROMs are preferred. Both EPROMs and EEPROMs can be programmed individually using an inexpensive programmer connected to the computer. The memory device is inserted into the programmer. The bits to be stored in each location of the memory device are generated by the development software. This data file is then transferred to the programmer, which then actually writes the bits into the memory device. Furthermore, both EPROMs and EEPROMs can be erased and re-programmed with different data bits.

Example 5.3

Implement the following two Boolean functions using 1x4 ROM circuit shown in Figure 5.18.

F1 (w,x,y,z) = w'x'yz + w'xyz' + w'xyz + wx'y'z' + wx'yz' + wxyz'

F2 (w,x,y,z) = w'x'y'z' + w'x

For F1, the 1-minterms are M3, m6, m7, m8, m10, and m14.

For F2, the 1-minterms are m0, m4, m5, m6, and m7.

Notice that in F2, the term w'x expands out to four minterms. The implementation is shown in the circuit connection below. We arbitrarily pick D0 to implement F1 and D1 to implement F2.[image: image4.png]siote 7] T
dacor

1
3
‏21‏/11‏/2019

