2) Linear First Order Equations

A differential equation that can be written in the form

$$\frac{dy}{dx} + P(x)y = Q(x)$$

where P and Q are functions of x, is called a *Linear First Order Equation*. The solution is

$$y = \frac{1}{\rho(x)} \int \rho(x) Q(x) dx$$

where

$$\rho(x) = e^{\int P(x)dx}$$

Steps for Solving a Linear First Order Equation

- i. Put it in standard form and identify the functions P and Q.
- ii. Find an anti-derivative of P(x).
- iii. Find the integrating factor $\rho(x) = e^{\int P(x)dx}$.
- iv. Find y using the following equation

$$y = \frac{1}{\rho(x)} \int \rho(x) Q(x) dx$$

Example

Solve the equation
$$x \frac{dy}{dx} - 3y = x^2$$

Solution

Step 1: Put the equation in standard form and identify the functions P and Q. To do so, we divide both sides of the equation by the coefficient of dy/dx, in this case x, obtaining

$$\frac{dy}{dx} - \frac{3}{x}y = x$$
 \Rightarrow $P(x) = -\frac{3}{x}$, $Q(x) = x$.

Step 2: Find an anti-derivative of P(x).

$$\int P(x)dx = \int -\frac{3}{x}dx = -3\int \frac{1}{x}dx = -3\ln(x)$$

Step 3: Find the integrating factor $\rho(x)$.

$$\rho(x) = e^{\int P(x)dx} = e^{-3\ln x} = e^{\ln x^{-3}} = e^{\ln \frac{1}{x^3}} = \frac{1}{x^3}$$

Step 4: Find the solution.

$$y = \frac{1}{\rho(x)} \int \rho(x) Q(x) dx = \frac{1}{(1/x^3)} \int \left(\frac{1}{x^3}\right) (x) dx$$
$$= x^3 \int \frac{1}{x^2} dx = x^3 \left(-\frac{1}{x} + C\right) = Cx^3 - x^2$$

The solution is the function $y = Cx^3 - x^2$.

Example

Solve the equation $(1+x^2)dy + (y-\tan^{-1}(x))dx = 0$.

Solution

Dividing the two sides by $(1+x^2)dx$

$$\frac{dy}{dx} + \frac{y}{1+x^2} - \frac{\tan^{-1}(x)}{1+x^2} = 0$$

$$\frac{dy}{dx} + \frac{y}{1+x^2} = \frac{\tan^{-1}(x)}{1+x^2} \implies P(x) = \frac{1}{1+x^2}, \quad Q = \frac{\tan^{-1}(x)}{1+x^2}$$

$$\int P(x)dx = \int \frac{1}{1+x^2} dx = \tan^{-1}(x)$$

$$\rho(x) = e^{\tan^{-1}(x)}$$

$$e^{\tan^{-1}(x)} y = \int e^{\tan^{-1}(x)} \frac{\tan^{-1}(x)}{1+x^2} dx + C$$

$$z = \tan^{-1}(x) \implies dz = \frac{1}{1+x^2} dx$$

$$e^{\tan^{-1}(x)}y = \int e^{z} \times z dz + C$$

$$= ze^{z} - \int e^{z} dz + C$$

$$= ze^{z} - e^{z} + C$$

$$e^{\tan^{-1}(x)}y = \tan^{-1}(x)e^{\tan^{-1}(x)} - e^{\tan^{-1}(x)} + C$$

Steps for Solving other Form of Linear First Order Equation

There is another form of differential equation that can be written in the form

$$\frac{dx}{dy} + P(y)x = Q(y)$$

where P and Q are functions of y. The solution is found as follows:

- i. Put it in standard form and identify the functions P and Q.
- ii. Find an anti-derivative of P(y).
- iii. Find the integrating factor $\rho(y) = e^{\int P(y)dy}$
- iv. Find x using the following equation

$$x = \frac{1}{\rho(y)} \int \rho(y) Q(y) dy$$

Example

Solve the equation $e^{2y} dx + 2(xe^{2y} - y) dy = 0$.

Solution

Dividing the differential equation by $e^{2y} dy$ to get

$$\frac{dx}{dy} + 2x - 2ye^{-2y} = 0$$

$$\frac{dx}{dy} + 2x = 2ye^{-2y} \qquad \Rightarrow \qquad P(y) = 2, \quad Q(y) = 2ye^{-2y}$$

$$\int P(y)dy = \int 2dy = 2y, \quad \rho(y) = e^{\int P(y)dy} = e^{2y}$$

$$x = \frac{1}{e^{2y}} \int (e^{2y})(2ye^{-2y})dy + C \quad \Rightarrow \quad e^{2y}x = 2\int ydy + C$$

$$e^{2y}x = 2\frac{y^2}{2} + C \qquad \Rightarrow \quad e^{2y}x = y^2 + C$$

Reducible to Linear

* The general form

$$\frac{dy}{dx} + P(x)y = Q(x)f(y)$$

where the function f is y to any power n.

Also, it may be in the following form

$$\frac{dy}{dx} + P(x)g(y) = Q(x)h(y)$$

where the function g and h are functions of y.

Example

Solve the equation
$$\frac{dy}{dx} + \frac{y}{x} = \ln(x)y^2$$

Solution

Dividing the two sides of the equation by y^2

$$\frac{1}{y^2} \frac{dy}{dx} + \frac{1}{xy} = \ln(x)$$
Let $z = \frac{1}{y}$ $\Rightarrow \frac{dz}{dx} = -\frac{1}{y^2} \frac{dy}{dx}$ $\Rightarrow \frac{dy}{dx} = -y^2 \frac{dz}{dx}$

$$-\frac{dz}{dx} + \frac{1}{x}z = \ln(x)$$

$$\frac{dz}{dx} - \frac{1}{x}z = -\ln(x) \Rightarrow P = \frac{-1}{x}, \quad Q = -\ln(x)$$

$$\int P(x)dx = \int \frac{-1}{x} dx = -\ln(x)$$

$$\rho(x) = e^{\int P(x)dx} = e^{-\ln(x)} = e^{\ln(x)^{-1}} = e^{\ln\left(\frac{1}{x}\right)} = \frac{1}{x}$$

$$\rho(x)z = \int \rho(x)Q(x)dx + C$$

$$\frac{1}{x}z = -\int \frac{1}{x}\ln(x)dx + C$$

$$\frac{1}{x} \times \frac{1}{y} = -\frac{(\ln(x))^2}{2} + C \implies \frac{1}{xy} = -\frac{(\ln(x))^2}{2} + C$$

<u>Example</u>

Solve the equation
$$\frac{dy}{dx} + x\sin(2y) = x\cos^2(y)$$

Solution

Dividing the two sides of the equation by $\cos^2(y)$

$$\frac{1}{\cos^2(y)} \frac{dy}{dx} + x \frac{\sin(2y)}{\cos^2(y)} = x \implies \sec^2(y) \frac{dy}{dx} + x \frac{2\sin(y)\cos(y)}{\cos^2(y)} = x$$

$$\sec^2(y) \frac{dy}{dx} + x \frac{2\sin(y)}{\cos(y)} = x \implies \sec^2(y) \frac{dy}{dx} + 2x \tan(y) = x$$
Let $z = \tan(y) \implies \frac{dz}{dx} = \sec^2(y) \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{1}{\sec^2(y)} \frac{dz}{dx}$

$$\frac{dz}{dx} + 2xz = x \implies P = 2x, \quad Q = x$$

$$\int P(x) dx = \int 2x dx = x^2 \implies \rho(x) = e^{\int P(x) dx} = e^{x^2}$$

$$\rho(x)z = \int \rho(x)Q(x) dx + C$$

$$e^{x^2}z = \int e^{x^2}(x) dx + C \implies e^{x^2} \tan(y) = \frac{e^{x^2}}{2} + C$$

Another Form of Reducible to Linear

The general form may be as follows

$$\frac{dx}{dy} + P(y)x = Q(y)f(x)$$

where the function f is x to any power n.

Also, it may be in the following form

$$\frac{dx}{dy} + P(y)g(x) = Q(y)h(x)$$

where the function g and h are functions of x.

Example

Solve the equation $\cos(y)dx = x(\sin(y) - x)dy$

Solution

Dividing the two sides of the equation by cos(y)dy

$$\frac{dx}{dy} = \frac{\sin(y)}{\cos(y)} x - \frac{x^2}{\cos(y)} \implies \frac{dx}{dy} - x \tan(y) = -x^2 \sec(y)$$

Dividing by x^2 , we get

$$\frac{1}{x^2}\frac{dx}{dy} - \frac{1}{x}\tan(y) = -\sec(y)$$

Let
$$z = \frac{1}{x}$$
 $\Rightarrow \frac{dz}{dy} = \frac{-1}{x^2} \frac{dx}{dy}$ $\Rightarrow \frac{dx}{dy} = -x^2 \frac{dz}{dy}$

$$-\frac{dz}{dy} - z \tan(y) = -\sec(y)$$

$$\frac{dz}{dy} + z \tan(y) = \sec(y) \Rightarrow P = \tan(y), \quad Q = \sec(y)$$

$$\int P(y)dy = \int \tan(y)dy = \int \frac{\sin(y)}{\cos(y)}dy = -\ln(\cos(y))$$

$$\rho(y) = e^{\int P(y)dy} = e^{-\ln(\cos(y))} = e^{\ln(\cos(y))^{-1}} = e^{\ln\left(\frac{1}{\cos(y)}\right)} = \sec(y)$$

$$\rho(y)z = \int \rho(y)Q(y)dy + C$$

$$\sec(y) \times \frac{1}{x} = \int \sec(y)\sec(y)dy + C$$

$$\frac{\sec(y)}{x} = \int \sec^2(y)dy + C \implies \frac{\sec(y)}{x} = \tan(y) + C$$

Exact Differential Equations

Example

If
$$f(x, y) = C$$
 and $f(x, y) = \sin(xy)$ then

$$\frac{df}{dx} = y\cos(xy) + x\cos(xy)\frac{dy}{dx} = 0$$
, or

$$df = y\cos(xy)dx + x\cos(xy)dy = 0$$

i.e.,
$$y\cos(xy)dx + x\cos(xy)dy = 0$$

From the above equation, we see that $M(x, y) = y \cos(xy) = \frac{\partial f}{\partial x}$, and $N(x, y) = x \cos(xy) = \frac{\partial f}{\partial y}$. The solution of this differential equation is f(x, y) = C.

Exact Differential Equation Test

A differential equation M(x, y)dx + N(x, y)dy = 0 is said to be **exact** if for some function f(x, y)

$$M(x, y)dx + N(x, y)dy = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = df$$

is exact if and only if

$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

Example

The equation $(x^2 + y^2)dx + (2xy + \cos(y))dy = 0$ is exact because the partial derivatives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(x^2 + y^2) = 2y, \qquad \frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(2xy + \cos(y)) = 2y$$

are equal.

The equation $(x+3y)dx + (x^2 + \cos(y))dy = 0$ is not exact because the partial derivatives

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y}(x+3y) = 3, \qquad \frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(x^2 + \cos(y)) = 2x$$

are not equal.

Steps for Solving an Exact Differential Equation

- i. Match the equation to the form M(x, y)dx + N(x, y)dy = 0 to identify M and N.
- ii. Integrate M (or N) with respect to x (or y), writing the constant of integration as g(y) (or g(x)).
- iii. Differentiate with respect to y (or x) and set the result equal to N (or M) to find g'(y) (or g'(x)).
- iv. Integrate to find g(y) (or g(x)).
- v. Write the solution of the exact equation as f(x, y) = C.

Example

Solve the differential equation

$$(x^2 + y^2)dx + (2xy + \cos(y))dy = 0$$
.

Solution

Step 1: Match the equation to the form M(x, y)dx + N(x, y)dy = 0 to identify M.

$$M(x, y) = x^2 + y^2$$

Step 2: Integrate M with respect to x, writing the constant of integration as g(y).

$$f(x,y) = \int M(x,y)dx = \int (x^2 + y^2)dx = \frac{x^3}{3} + xy^2 + g(y)$$

Step 3: Differentiate with respect to y and set the result equal to N to find g'(y).

$$\frac{\partial}{\partial y} \left(\frac{x^3}{3} + xy^2 + g(y) \right) = 2xy + g'(y)$$

$$2xy + g'(y) = 2xy + \cos(y) \implies g'(y) = \cos(y)$$

Step 4: Integrate to find g(y).

$$\int g'(y)dy = \int \cos(y)dy = \sin(y)$$

Step 5: Write the solution of the exact equation as f(x, y) = C.

$$\frac{x^3}{3} + xy^2 + \sin(y) = C$$

Another Solution

Step 1: Match the equation to the form M(x, y)dx + N(x, y)dy = 0 to identify N.

$$N(x, y) = 2xy + \cos(y)$$

Step 2: Integrate N with respect to y, writing the constant of integration as g(x).

$$f(x, y) = \int N(x, y) dy = \int (2xy + \cos(y)) dy = xy^2 + \sin(y) + g(x)$$

Step 3: Differentiate with respect to x and set the result equal to M to find g'(x).

$$\frac{\partial}{\partial x} (xy^2 + \sin(y) + g(x)) = y^2 + g'(x)$$

$$y^2 + g'(x) = x^2 + y^2 \implies g'(x) = x^2$$

Step 4: Integrate to find g(x).

$$\int g'(x)dx = \int x^2 dx = \frac{x^3}{3}$$

Step 5: Write the solution of the exact equation as f(x, y) = C.

$$\frac{x^3}{3} + xy^2 + \sin(y) = C$$

Reducible to Exact

A differential equation M(x,y)dx + N(x,y)dy = 0 which is not exact can be made exact by multiplying both sides by a suitable integrating factor ρ . In other words, the equation

$$\rho M(x, y)dx + \rho N(x, y)dy = 0$$

is an exact equation for an appropriate choice of ho .

Method to Find the Integrating Factor

• If
$$\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = f(x)$$
 or *Constant* then $\rho(x) = e^{\int f(x)dx}$.

Example

Solve the equation 2ydx + xdy = 0

Solution

$$M(x, y) = 2y$$
 \Rightarrow $\frac{\partial M}{\partial y} = 2$

$$N(x, y) = x$$
 \Rightarrow $\frac{\partial N}{\partial x} = 1$

This equation is not exact

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = \frac{2 - 1}{x} = \frac{1}{x} = f(x)$$

$$\int f(x)dx = \int \frac{1}{x}dx = \ln(x)$$

$$\rho(x) = e^{\int f(x)dx} = e^{\ln(x)} = x$$

Multiplying both sides of the equation by the integrating factor $\rho(x) = x$, we get

$$x(2ydx + xdy) = 0$$
 \Rightarrow $2xydx + x^2dy = 0$

which is exact because $\frac{\partial M}{\partial y} = 2x$ and $\frac{\partial N}{\partial x} = 2x$, and the solution is

$$f(x,y) = \int 2xy dx = x^2 y + g(y)$$

$$\frac{\partial}{\partial y} (x^2 y + g(y)) = x^2 + g'(y)$$

$$x^2 + g'(y) = x^2 \implies g'(y) = 0$$

$$g(y) = \int g'(y)dy = C \implies x^2y = C$$