i consns I

» A type of heuristic method that refer to the process of
constructing an initial feasible solution from scratch.ﬂ—

» Starts with a scratch (empty solution). \,
> Used local heuristic to select the new element to be

included in the solution.

» Repeatedly extends the current solution until a complete

solution is obtained.

Simple to Easy to

design implement

But,
Executes

quickly

usually, no
optimality

Creating an empty solution S; S ={};

Repeat

e; = Local-Heuristic(E\{e/e € s}) ; /* E is set of elements */

/* next element selected from the set E minus already selected elements */
If SU e; € F Then /* test the feasibility of the solution , FE search space */
S=Su €,

Until Complete solution found

Local-Heuristic
used to choose

the best
element

Creating an empty solution S; S ={};

Randomly select e

S=SUvUe ;

Repeat

Next nearest element selected from the set E (e;)

If SU e; € F Then /* test the feasibility of the solution , FE search space */
S=Su €,

Until Complete solution found

Creating an empty solution S; S ={};

Randomly select e

S=SUvUe ;

Repeat

Next element is randomly selected from the set E (e;)

If SU e; € F Then /* test the feasibility of the solution , FE search space */
S=Su €,

Until Complete solution found

B C D
A 2 1 7
B 0 2 4
C 0 6
D 0
E
Solution: A-B-E-D-C-A Cost=2+3+4+6+1 Cost=16

DISTANCE TABLE

o A N W U1 m

A B C D E
A 0 2 1 7 5
B 0 2 4 3
C 0 6 2
D 0 4
E 0

Solution: A-C-E-B-D-A Cost=1+2+3+4+5 Cost=15

Solution: A-C-E-D-B-A

Cost=1+10+23+3+2

Cost=39

Optimal Solution:

A-C-D-B-E-A

Cost=1+2+3+8+5

Cost=19

Solution: A-C-B-D-E-A

Cost=1+1+3+23+5

Cost=23

Optimal Solution:

A-C-D-B-E-A

Cost=1+2+3+8+5

Cost=19

Neighborhood

A neighborhood function N is a mapping N : S = 2° that
assigns to each solution s of S a set of solutions Nfs) € S

» Plays a crucial role in the performance of metaheuristic.
» If the neighborhood structure is not adequate to the
problem, any metaheuristic will fail to solve the problem

A solution s’ in the neighborhood of s (s’ € N(s)) is called a neighbor of s.

A neighbor is generated by the application of a move operator m that
performs a small perturbation to the solution s.

Neighborhood

The main property that must characterize a neighborhood is
locality.

Locality is the effect on the solution when performing the move
(perturbation) in the representation.

When small changes are made in the representation (small effect on the
solution, the neighborhood is said to have a strong locality.

Weak locality is characterized by a large effect on the solution when a small
change is made in the representation.

Example: Swap neighborhood operator (VRP)

Route 1 Route 2 Route 3

Current Solution [*o T3 T 5 0o 2l1{ofo|6[10]4]7

Route 3

| 610147810

|

Route 1 Route 2 Route 3
Neighbor Solution | o [3 [11|s|7]ofo|2]12]1]0 610[4]9o]8]o0

replace a single customer by another in
different route.

Example: Move (Shift) neighborhood operator (VRP)

_ Route 3
CurrentSolution o T3 [11 |5 [90| o]2|12]1]0]|o]6|0]a]7]s
[

Select Two Different Routes Randomly

v

_ Routel
. 311 s ‘ 9 .
Route 3
6 | 10| 4 7 8

Select a Single Customer

v

x

29
e"‘“\

——
Route 3

6 |10 4| 7|8

v
Neighbor Soluti Route 1
eighbor Solution 19 T3 T T s [7[ofofof2]wz]1[ofo[6]0[4]s]o0]

transfer one customer to the other route |

Example: 2-opt star neighborhood operator (VRP)

_ Route 3
CureentSoluton "0 T3 T11 | 5 [o [0 | 0] 2 12] 1 [0]0]6]10]s]7]s
|

Select Two Different Routes Randomly

\

Route 1

o |3|11|5]9]0]

Route 3
6 [10]4]7]s

Select Two Different End Segments

|

Route 1
0|3 11|59]0

——

1

Gj“ﬁ

\

—

Route 3
6 1014178

!

Neiehbor Soluti Route 1 Route 2 Route 3
eighbor Solution |0 T T T2 Ts [olo]2]12]1]o]o]6]10]5]9]0

randomly selects two routes from the current solution and swap
the customers located at the end sections of selected routes

v

Create an Initial Solution (S0);
S= S0, A S - current solution
Sb= S0, /' Sb: bestsolution

>
v

Generate Neighboring Solution ($7)

If
Acceptable
Solution?

NO

Yes

Update Best Solution
Sb=S";

Stopping
Criterion=true?

Return Best
Solution (Sb)

End

