METAHEURISTICS

Objectives

This course provides a complete background that enables readers to design and implement powerful metaheuristics to solve complex optimization problems in a diverse range of application domains.

Designing efficient metaheuristics for optimization problems.

How metaheuristics are applied to solve the real-world examples of problems?

Recommended Text Books and References

 Talbi, E.-G. (2009). *Metaheuristics: from design to implementation* (Vol. 74): John Wiley & Sons.

 Zäpfel, G., Braune, R., & Bögl, M. (2010). *Metaheuristic search concepts: A tutorial with applications to production and logistics*: Springer Science & Business Media.

Lecture Schedule:

Lecture Schedule:

Lecture Schedule:

What is optimization?

Finding short path

Constructing the fastest car

Finding the most profitable investment plan

Optimization is the art of making good decisions. Every question that asks for a thing with a superlative feature is an optimization problem

Scheduling your work so that you have the most spare time left for gaming

What is optimization?

The Optimization Problem is: Find values of the variables that minimize or maximize the objective function while satisfying the constraints.

How can we solve such problems?

finding one solution to a problem is almost always very easy and can be done extremely fast. finding the best possible solution (satisfying constraints) is what takes very long

Optimization problems:

Unconstrained Optimization Problem

- an objective function that depends on real variables with no restrictions on their values.
- either had no boundaries, or the boundaries were soft.

Constrained Optimization Problem

The process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. A constraint is a hard limit placed on the value of a variable.

Bin Packing Problem

asking for the minimum number of containers (each of the same volume) needed to package a certain set of (differentlysized) items

Knapsack Problem

- You have a knapsack that has capacity (weight) W.
- You have several items 11,...,In.
- Each item Ij has a weight wj and a benefit bj.
- You want to place a certain number of copies of each item Ij in the knapsack so that:
 - The knapsack weight capacity is not exceeded and
 - The total benefit is maximal.

asking for the maximum sum value of items (selected from a specific set of items with different values and sizes) we can pack into a given volume

Set Covering Problem

where a set of subsets is given and we want to find the minimum number of subsets whose union still covers all the elements in all subsets.

Graph Coloring

we ask for the minimum number of colors to be assigned to the nodes of a given graph so that no two nodes connected by an edge have the same color

Quadratic Assignment Problem

find an assignment with minimal total sum product of *flow*distance*.

Capacitated VRP

The objective is to minimize the vehicle fleet **OR** the sum of travel time. not exceed the capacity of the vehicle which serves that route.