
Process

Management: Deadlocks



Overview

In a multiprogramming environment, several

processes may compete for a finite number of

resources.

A process requests resources; if the resources

are not available at that time, the process

enters a waiting state.

Sometimes, a waiting process is never again able

to change state, because the resources it has

requested are held by other waiting

processes. This situation is called a

deadlock.



A deadlock situation can arise if the following four 

conditions hold simultaneously in a system:

1. Mutual exclusion. At least one resource must be held in a non sharable

mode; that is, only one process at a time can use the resource. If another

process requests that resource, the requesting process must be delayed

until the resource has been released.

2. Hold and wait. A process must be holding at least one resource and waiting

to acquire additional resources that are currently being held by other

processes.

3. No preemption. Resources cannot be preempted; that is, a resource can be

released only voluntarily by the process holding it, after that process has

completed its task.

4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist such

that P0 is waiting for a resource held by P1, P1 is waiting for a resource

held by P2, ..., Pn−1 is waiting for a resource held by Pn, and Pn is

waiting for a resource held by P0.



Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a

directed graph called a system resource-allocation graph.

This graph consists of a set of vertices V and a set of edges E.

The set of vertices V is partitioned into two different types of

nodes: P = {P1, P2, ..., Pn}, the set consisting of all the active

processes in the system, and R = {R1, R2, ..., Rm}, the set

consisting of all resource types in the system.





Given the definition of a resource-allocation graph, it can be

shown that,

1. If the graph contains no cycles, then no process in the system

is deadlocked.

2. If the graph does contain a cycle, then a deadlock may exist.

3. If each resource type has exactly one instance, then a cycle

implies that a deadlock has occurred.

4. If the cycle involves only a set of resource types, each of

which has only a single instance, then a deadlock has

occurred. Each process involved in the cycle is deadlocked.

In this case, a cycle in the graph is both a necessary and a

sufficient condition for the existence of deadlock.

5. If each resource type has several instances, then a cycle

does not necessarily imply that a deadlock has occurred. In

this case, a cycle in the graph is a necessary but not a

sufficient condition for the existence of deadlock.



Examples



There are two cycles in the graph:

P1 → R1 → P2 → R3 → P3 → R2 → P1

P2 → R3 → P3 → R2 → P2

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting

for the resource R3, which is held by process P3. Process P3

is waiting for either process P1 or process P2 to release

resource R2. In addition, process P1 is waiting for process P2

to release resource R1.





Methods for Handling Deadlocks

1. We can use a protocol to prevent or avoid deadlocks,

ensuring that the system will never enter a deadlocked state.

2. We can allow the system to enter a deadlocked state, detect

it, and recover.

3. We can ignore the problem altogether and pretend that

deadlocks never occur in the system.



Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions

must hold. By ensuring that at least one of these conditions

cannot hold, we can prevent the occurrence of a deadlock.

Mutual Exclusion: The mutual exclusion condition must hold.

That is, at least one resource must be non sharable. Sharable

resources, in contrast, do not require mutually exclusive

access and thus cannot be involved in a deadlock. Read-only

files are a good example of a sharable resource.



Hold and Wait: To ensure that the hold-and-wait condition never

occurs in the system, we must guarantee that, whenever a

process requests a resource, it does not hold any other

resources. One protocol that we can use requires each

process to request and be allocated all its resources before it

begins execution.

Circular Wait: The another condition for deadlocks is the circular-

wait condition. One way to ensure that this condition never

holds is to impose a total ordering of all resource types and to

require that each process requests resources in an increasing

order of enumeration.



No Preemption: The third necessary condition for deadlocks is

that there be no preemption of resources that have already

been allocated. To ensure that this condition does not hold,

we can use the following protocol.

If a process is holding some resources and requests another

resource that cannot be immediately allocated to it (that is,

the process must wait), then all resources the process is

currently holding are preempted. In other words, these

resources are implicitly released. The preempted resources

are added to the list of resources for which the process is

waiting. The process will be restarted only when it can regain

its old resources, as well as the new ones that it is

requesting.



Deadlock Avoidance

We can avoid deadlock by using a modified Resource-Allocation-

Graph Algorithm.

The following is a modified graph with request edges, and claim

edges (dashed lines) that indicates that process Pi may

request resource Rj at some time in the future.



Now suppose that process Pi requests resource Rj. The request

can be granted only if converting the request edge Pi → Rj to

an assignment edge Rj → Pi does not result in the formation

of a cycle in the resource-allocation graph.



If no cycle exists, then the allocation of the resource will leave the

system in a safe state. If a cycle is found, then the allocation

will put the system in an unsafe state. In that case, process Pi

will have to wait for its requests to be satisfied.

To illustrate this algorithm, we consider the resource-allocation

graph of Figure 7.7. Suppose that P2 requests R2. Although

R2 is currently free, we cannot allocate it to P2, since this

action will create a cycle in the graph (Figure 7.8). A cycle, as

mentioned, indicates that the system is in an unsafe state. If

P1 requests R2, and P2 requests R1, then a deadlock will

occur.





Banker’s Algorithm 

The banker’s algorithm is a resource

allocation and deadlock avoidance algorithm

that tests for safety by simulating the

allocation for predetermined maximum

possible amounts of all resources, then

makes an “safe-state” check to test for

possible activities, before deciding whether

allocation should be allowed to continue.



Banker’s Algorithm (Count.. )

When a new process enters the system, it must

declare the maximum number of instances of each

resource type that it may need. This number may

not exceed the total number of resources in the

system. When a user requests a set of resources, the

system must determine whether the allocation of

these resources will leave the system in a safe state.

If it will, the resources are allocated; otherwise, the

process must wait until some other process releases

enough resources.



Banker’s Algorithm (Count.. )
Several data structures must be maintained to implement the banker’s algorithm.

These data structures encode the state of the resource- allocation system. We need

the following data structures, where n is the number of processes in the system and

m is the number of resource types:

Available. Avector of lengthmindicates the number of available resources of each

type. If Available[j] equals k, then k instances of resource type Rj are available.

• Max. An n × m matrix defines the maximum demand of each process. If

Max[i][j] equals k, then process Pi may request at most k instances of resource

type Rj .

• Allocation. An n × m matrix defines the number of resources of each type

currently allocated to each process. If Allocation[i][j] equals k, then process Pi

is currently allocated k instances of resource type Rj .

• Need. An n × m matrix indicates the remaining resource need of each process. If

Need[i][j] equals k, then process Pi may need k more instances of resource type

Rj to complete its task. Note that

Need[i][j] = Max[i][j] − Allocation[i][j]



Banker’s Algorithm illustration
To illustrate the use of the banker’s algorithm, consider a system with 

five processes P0 through P4 and three resource types A, B, and C. 

Resource type A has ten instances, resource type B has five instances, 

and resource type C has seven instances. Suppose that, at time T0, the 

following snapshot of the system has been taken:



Banker’s Algorithm illustration (Cout.. )

The content of the matrix Need is defined to be Max − Allocation and is as 

follows:



Banker’s Algorithm illustration (Cout.. )


