
Memory

Management 



Address Binding

Usually, a program resides on a disk as a binary

executable file. To be executed, the program

must be brought into memory and placed

within a process.

Depending on the memory management in use,

the process may be moved between disk and

memory during its execution.

The processes on the disk that are waiting to be

brought into memory for execution form the

input queue.



In most cases, a user program goes through several

steps before being executed (Figure 8.3).

Addresses may be represented in different ways during

these steps.

Addresses in the source program are generally symbolic

(such as the variable count).

A compiler typically binds these symbolic addresses to

relocatable addresses.

The linkage editor or loader in turn binds the

relocatable addresses to absolute addresses (such

as 74014).

Each binding is a mapping from one address space to

another.





Logical Versus Physical Address 

Space
An address generated by the CPU is commonly

referred to as a logical address, whereas an

address seen by the memory unit—that is, the

one loaded into the memory-address register

of the memory—is commonly referred to as a

physical address.



The set of all logical addresses generated

by a program is a logical (virtual)

address space. The set of all physical

addresses corresponding to these logical

addresses is a physical address space.

Thus, in the execution-time address-

binding scheme, the logical and physical

address spaces differ.



The run-time mapping from virtual to physical addresses

is done by a hardware device called the memory-

management unit (MMU).

The base register is called a relocation register. The

value in the relocation register is added to every

address generated by a user process at the time the

address is sent to memory (see Figure 8.4).

The user program never sees the real physical

addresses.





Dynamic Loading

The size of a process is limited to the size of physical

memory. To obtain better memory-space utilization,

we can use dynamic loading.

With dynamic loading, a routine is not loaded until it is

called. All routines are kept on disk in a relocatable

load format. The main program is loaded into

memory and is executed. When a routine needs to

call another routine, the calling routine first checks to

see whether the other routine has been loaded. If it

has not, the relocatable linking loader is called to

load the desired routine into memory and to update

the program’s address tables to reflect this change.



Contiguous Memory Allocation

In contiguous memory allocation, each process is contained in

a single section of memory that is contiguous to the section

containing the next process.

One of the simplest methods for allocating memory is to divide

memory into several fixed-sized partitions.

Each partition may contain exactly one process. Thus, the degree

of multiprogramming is bound by the number of partitions. In

this multiple partition method, when a partition is free, a

process is selected from the input queue and is loaded into

the free partition. When the process terminates, the partition

becomes available for another process.



Another allocation method is the variable-partition

scheme. OS keeps a table indicating which parts of

memory are available and which are occupied.

Initially, all memory is available for user processes and

is considered one large block of available memory, a

hole. Eventually, memory contains a set of holes of

various sizes.



The problem of Contiguous Memory 

Allocation: Fragmentation
As processes are loaded and removed from memory, the free

memory space is broken into little pieces.

Fragmentation exists when there is enough total memory space

to satisfy a request but the available spaces are not

contiguous: storage is fragmented into a large number of

small holes.

This fragmentation problem can be severe. In the worst case, we

could have a block of free (or wasted) memory between every

two processes.

If all these small pieces of memory were in one big free block

instead, we might be able to run several more processes.



Segmentation

Segmentation is a memory-management scheme that

permits the physical address space of a process to

be noncontiguous, it is a collection of segments.

Each segment has a name (number) and a length. The

addresses specify both the segment name and the

offset within the segment. The programmer therefore

specifies each address by two quantities: a segment

name and an offset.

Thus, a logical address consists of a two tuple:

<segment-number, offset>



This mapping is effected by a segment table. Each

entry in the segment table has a segment base and

a segment limit.

The segment base contains the starting physical

address where the segment resides in memory, and

the segment limit specifies the length of the

segment.

The use of a segment table is illustrated in Figure 8.8. A

logical address consists of two parts: a segment

number, s, and an offset into that segment, d.







Paging

Paging is another memory-management scheme.

Paging avoids external fragmentation and the need

for compaction, whereas segmentation does not.

It also solves the considerable problem of fitting memory

chunks of varying sizes onto the backing store.

.



The basic method for implementing paging involves

breaking physical memory into fixed-sized blocks

called frames and breaking logical memory into

blocks of the same size called pages.

When a process is to be executed, its pages are loaded

into any available memory frames from their source



The hardware support for paging is illustrated in Figure 8.10.

Every address generated by the CPU is divided into two parts: a

page number (p) and a page offset (d).

The page number is used as an index into a page table. The page

table contains the base address of each page in physical

memory. This base address is combined with the page offset

to define the physical memory address that is sent to the

memory unit. The paging model of memory is shown in

Figure 8.11.







Virtual Memory

A virtual memory system attempts to optimize the use of the main

memory (the higher speed portion) with the hard disk (the

lower speed portion). In effect, virtual memory is a technique

for using the secondary storage to extend the apparent

limited size of the physical memory beyond its actual physical

size.

It is usually the case that the available physical memory space will

not be enough to host all the parts of a given active program.

Those parts of the program that are currently active are

brought to the main memory while those parts that are not

active will be stored on the magnetic disk.

22



If the segment of the program containing the word

requested by the processor is not in the main memory

at the time of the request, then such segment will have

to be brought from the disk to the main memory.

Movement of data between the disk and the main memory

takes the form of pages. A page is a collection of

memory words, which can be moved from the disk to

the RAM when the processor requests accessing a

word on that page.

A typical size of a page in modern computers ranges from

2K to 16K bytes.

A page fault occurs when the page containing the word

required by the processor does not exist in the RAM

and has to be brought from the disk. 23



Information about the main memory locations and the

corresponding virtual pages are kept in a table called the

page table. The page table is stored in the main memory.

Other information kept in the page table includes a bit indicating

the validity of a page, modification of a page, and the

authority for accessing a page.

The valid bit is set if the corresponding page is actually loaded

into the main memory. Valid bits for all pages are reset when

the computer is first powered on.

24



The other control bit that is kept in the page table is the

dirty bit. It is set if the corresponding page has been

altered while residing in the main memory. If while

residing in the main memory a given page has not

been altered, then its dirty bit will be reset. This can

help in deciding whether to write the contents of a

page back into the disk (at the time of replacement) or

just to override its contents with another page.

25



Replacement Algorithms (Policies)

When a process needs a nonresident page, the

operating system must decide which resident

page is to be replaced by the requested page.

The technique used in the virtual memory that

makes this decision is called the replacement

policy.

There exists a number of possible replacement

mechanisms:

26



• Random Replacement According to this replacement

policy, a page is selected randomly for replacement.

• First-In-First-Out (FIFO) Replacement According to this

replacement policy, the page that was loaded before

all the others in the main memory is selected for

replacement.

• Least Recently Used (LRU) Replacement According to

this technique, page replacement is based on the

pattern of usage of a given page residing in the main

memory regardless of the time spent in the main

memory. The page that has not been referenced for

the longest time while residing in the main memory is

selected for replacement.
27


