2D Game Algorithms

m 2D Game Algorithms

» Screen-Based Games

» Scrolling Game

» Multilayered Engines

» Semi-3D approach m
« Parallax Scrollers
« Isometric Engines

» Page-Swap Scroller




» 2D Game Algorithms

Screen-Based Games
» The player confronts a series of screens
* screen == gameworld
» No continuity or transition between screens

« Ex) 320x240 screen using 32x32 tiles

#define tile wide 32
#define tile_high 32
#define screen_wide 320
#define screen_high 240

int xtiles=screen_wide/tile_wide;
int ytiles=screen_highttile_high;

for (yi=0;yi<ytiles;yi++) {
or (XI =0:Xi<xtiles; x1++) {
int screenx = xi * tile_wide;

int screeny = yi * tile_high; Hold whole game map:

int tileid = ma matrix [yi][xi]; : . ; e
blit(tile table['ﬁf) screengi[cr!aeny); Mapping matrix [roomid] [yi] [xi]




» 2D Game Algorithms

m Two- and Four-way Scrollers (= Scrolling Game)

» Create a larger than-screen gameworld that we can
continually explore from a sliding camera

» A continuum, with no screen swapping at all

» More complex than scree{-‘;ased game

» Ex) 1942(2-way top-down), Super Mario Bros(2-way side-
scrolling), Zelda(4-way top-down scrolling)




» 2D Game Algorithms

m Scrolling Game (Complete rendering loop)

#define tile_wide 32
#define tile_high 32
#define screen wide 320
#define screen_high 240

tileplayerx= playerx/tile_wide
tileplayery= playery/tile_high

int xtiles=screen_wide/tile wide;

int ytiles=screen_high/tile_high;

int beginx= tileplayerx — xtiles/2;
int beginy= tileplayery — ytiles/2;

int endx= tileplayerx + xtiles/2;
int endy= tileplayery + ytiles/2;

for (yi=beginy;yi<endy;yi++){
for (xi=beginx;xi<endx;xi++) {
int screenx=xi*tile_wide -playerx+screenplayerx;
@soreenyzyi‘tile high -playery +screenplayery;
waf tileid=mapping_matrix [yi][xi];
blit(tile_table(tileid],screenx,screeny);
}
}

Gameworld




' vy, 2D Game Algorithms

m Multilayered Engines
» Use several mapping matrices to encode the game map
* Need to combine tiles
* Need to move objects over the BG
« Want to give the illusion of depth
« Ex) BG: terrains, another: trees

for (yi=beginy; yi<endy; yi++){
for (xi=beginx; xi<cendx; Xi++) {
int screenx=xi*tile_wide-playerx+screenplayerx;
int screeny=yi*tile_high-playery+screenplayery;
for (layeri=0;layericnumlayers;layeri++) {
int tileid=mapping_matrix [layeri][yi][xi];
if (tileid>0) blit(tile_table[tileid],screenx,screeny);

}




“mnEX: 1x4 Bitmap Template

256
pixels

&
% . = ’lan’
PR
- |
/ All (0,3)

Cell (0,0)



Multi-layering Tiles

s Most worlds require layering. Ex:
» place grass
» place flowers on grass
» place cloud over flowers

s Other common objects:
» trees C
» rocks
» treasure

m To edit:
» use multiple tiles, one for each layer
» map file may join & order tiles




» 2D Game Algorithms

m Semi-3D approach
» Parallax Scrollers

* The illusion of a third dimension by simulating depth
v’ Storing depth-layered tiles

v Moving them at different speeds to convey a sense of depth

if (pressed the right cursor)
for (layeri=0;layericnumlayers;layeri++)
playerx[layeri]l+=1*(layeri+1);

for (layeri=0;layericnumlayers;layeri++) {
for (yi=beginy; yi<endy; yi++){

for (xi=beginx; xicendx; Xi++) {
int screenx=xi*tile_wide-playerx[layeri]-screenplayerx;
int screeny=yi*tile_high-playery[layeri]-screenplayery;
int tileid=mapping_matrix [layeri][yi][xi];
if (tileid>0) blit(tile_table][tileid],screenx,screeny);

}




/T 2D Game Algorithms

» Isometric Engines
* Representing an object from raised viewpoint (rotate 45)
v Parallel projection = do not suffer from distortion

» Tiles for an isometric(Z 23 71) are rhomboids (Z & Al &)
v Tend to be wider than they are high




", 90 Game Algorithms

m Page-Swap Scroller
» Without being restricted to a closed set of tiles
« Sector should be loaded into main memory

» The rest are stored secondary media
v Will be swapped into MM as needed

» The mapper resembles a cache memory
» Improve performance
* The velocity of the player ??




Special Effects

Palette Effects
Stippling Effects
Glenzing

Fire




Palette Effects

m Palette Effects

» Implemented by manipulating, not the screen itself, but the
hardware color palette

 Altering the palette was much faster than having to write
to the frame buffer (not depend on the screen resolution)

m fade in/out

void FadeOut() }IOid Fadeln()
{
unsigned char r,g,b; unsigned charr, g, b;
for (int isteps=0;isteps<64;isteps++) : for (int isteps=0;isteps<64;isteps++)
{
WaitVSync(); WaitVSync();
for (int ipal=0;ipal<256;ipal++) { for (int ipal=0;ipal<256;ipal++) {
GetPaletteEntry(ipal,r,g,b); GetPaletteEntry(ipal,r,g,b);
if (r>0) r--; if (r<palette[ipal].r) r++;
if (g>0) g--; if (g<palette[ipal].g) g++;
if (b>0) b--; if (b<palette[ipal].b) b++;
SetPaletteEntry(ipal,r,g,b); \ SetPaletteEntry(ipal, r, g, b);
}




palette rotation

m if we change some palette entries, we can produce
color changes in sprites that look like real animation.
» Ex) water, lava, fire, neon glows '
+ Semaphore(&l S E) \//f“/\
v four palette entries 3
v 1: Yellow —
v 2: Black /}\}
v 3: Green walking char. L
v 4: Red stop sign

« Animated water(2 2
v Reserve six palettes
v store different hue of water color (Deep blue = light blue)

N »



Stippling Effects

m Stipple
» A simple patterned texture that combines one color (generally black
or grey) with the transparency index
m lllusion of shadow(_1& At £ &)
1. Render the background
2. Using the transparency index, render the stipple
3. Render the character
m Fog(2tH)
1. Render the background.
2. Render the character.
3. Using the transparency index, render the stipple.
m illuminate parts of the scene
» Stippling pattern must be colored as the light source (yellow, orange)
m fog-of-war techniques

» Where only the part of the map where the player has actually
explored is shown, and the rest is covered in fog

« The closer the area, the less dense the fog

I




Glenzing

m Stippling
» Nothing but a poor man’s transparency
m Glenzing

» Really mix colors as if we were painting a partially transparent
object

» Convert a color interpolation into a paletie value interpolation
» Better than those achieved by simple stippling

Color = Color_transparent*opacity + Color_opaque*(1-opacity)




Fire Effect

m Fire Effect
» Can be an animated sprite
» Using 2D particle system
» Using a cellular automata on the frame buffer

- Automata consisting of a number of cells running in
parallel whose behavior is governed by neighboring cells
« EXx) simulate life, create fire
v Fire emitter
— pure white fire color = yellow, orange, red, black

color(x,y) = (color(x,y+1) + color(x+1,y+1) + color(x-1,y+1))/3

Expensive effect: need the whole screen to be recalculated at each frame
=» Confine to a specific area




Fire Effect

/| generate new sparks

for (int i=0;i<SCREENX/2;i++) {

int x=rand()%SCREENX;

int col=rand()%25;

PutPixel(x,SCREENY-1,col); // C.rjitted by the bottom of the screen

}

/| recompute fire
for (int ix=0;ix<SCREENX;ix++) {
for (int iy=0;iy<SCREENY;iy++){
unsigned char col;
col = (GetPixel(ix-1,iy+1) + GetPixel(ix,iy+1) + GetPixel(ix+1,iy+1)) / 3;
PutPixel (ix,iy,col);
}
}




Sprite Data

s Suppose we wanted to draw an animated Mario, what data might
we need?
» position
» z-order (huh?)
speed
direction
Texture(s) O
« array of Textures if using individual images
« each index represents a frame of animation
possible states of sprite
current state of sprite (standing, running, jumping, dying, etc.)
animation sequences for different states. Huh?
current frame being displayed (an index)
animation speed




