

Dr.Khalid F. AL-RAWI College of science –Department of Chemistry Third Stage- Second Class

Friedrich Miescher in 1869

- isolated what he called nuclein from the nuclei of pus cells
- Nuclein was shown to have acidic properties, hence it became called nucleic acid

Two types of nucleic acid are found

- Deoxyribonucleic acid (DNA)
- Ribonucleic acid (RNA)

The distribution of nucleic acids in the eukaryotic cell

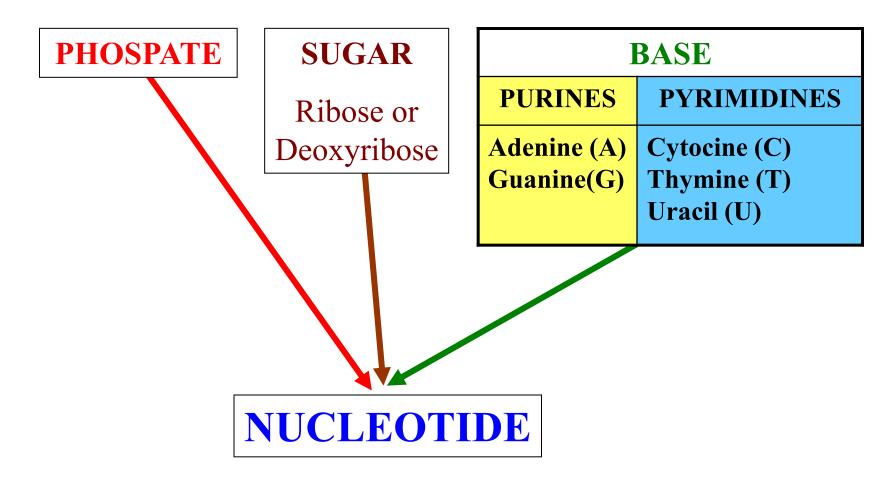
DNA is found in the nucleus

with small amounts in mitochondria and chloroplasts

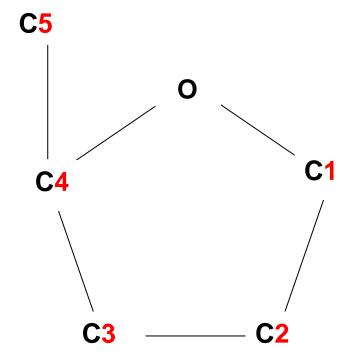
RNA is found throughout the cell

DNA as genetic material: The circumstantial evidence

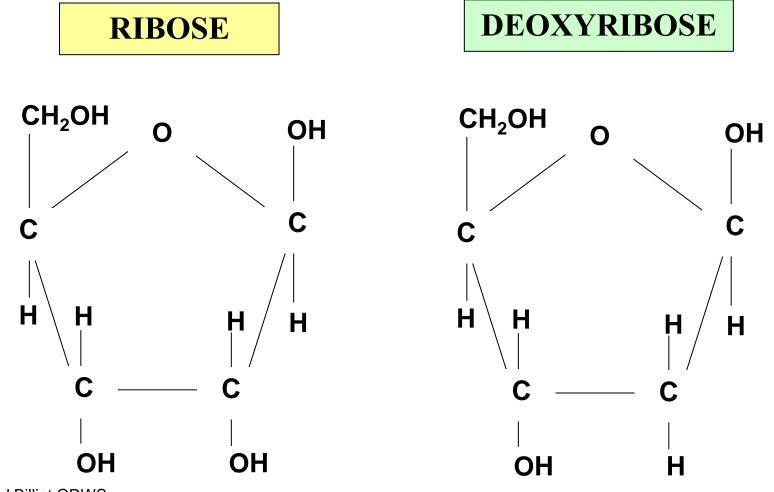
- 1. Present in all cells and virtually restricted to the nucleus
- 2. The amount of DNA in somatic cells (body cells) of any given species is constant (like the number of chromosomes)
- 3. The DNA content of gametes (sex cells) is half that of somatic cells.


In cases of polyploidy (multiple sets of chromosomes) the DNA content increases by a proportional factor

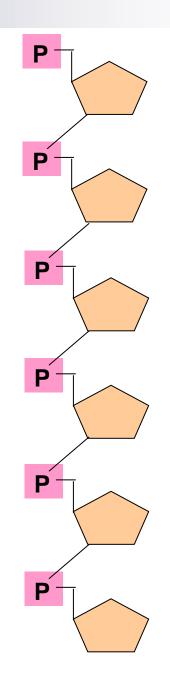
4. The mutagenic effect of UV light peaks at 253.7nm. The peak for the absorption of UV light by DNA


NUCLEIC ACID STRUCTURE

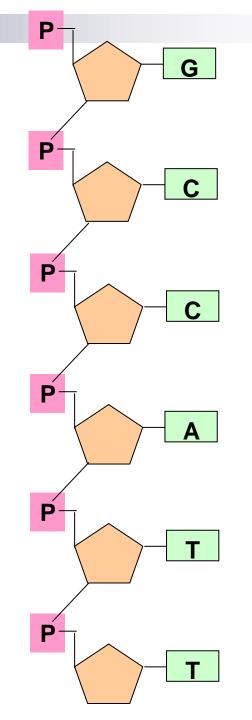
- Nucleic acids are polynucleotides
- Their building blocks are nucleotides


NUCLEOTIDE STRUCTURE

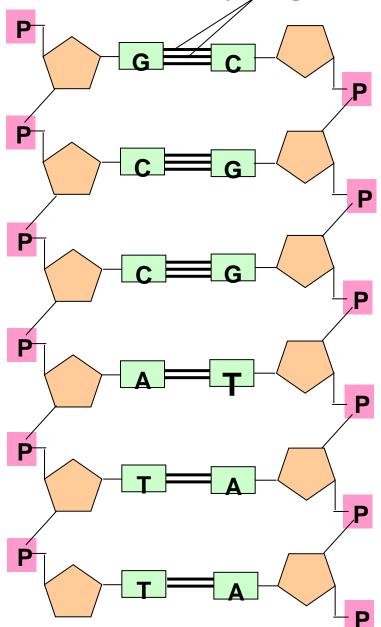
Ribose is a pentose



Spot the difference


THE SUGAR-PHOSPHATE BACKBONE

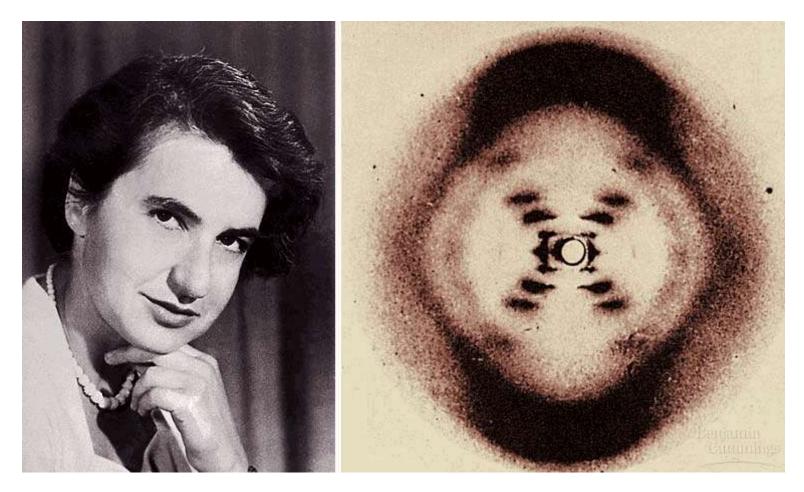
- The nucleotides are all orientated in the same direction
- The phosphate group joins the 3rd Carbon of one sugar to the 5th Carbon of the next in line.


ADDING IN THE BASES

- The bases are attached to the 1st Carbon
- Their order is important
 It determines the genetic information of the molecule

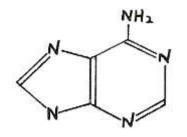
Hydrogen bonds

DNA IS MADE OF TWO STRANDS OF POLYNUCLEOTIDE

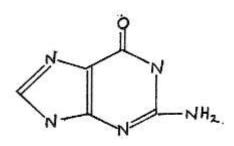

DNA IS MADE OF TWO STRANDS OF POLYNUCLEOTIDE

- The sister strands of the DNA molecule run in opposite directions (antiparallel)
- They are joined by the bases
- Each base is paired with a specific partner:
- A is always paired with T
- G is always paired with C
- Purine with Pyrimidine
- This the sister strands are complementary but <u>not</u> identical
- The bases are joined by hydrogen bonds, individually weak but collectively strong

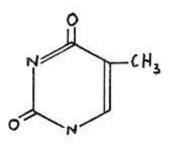
Erwin Chargaff's Data (1950-51)

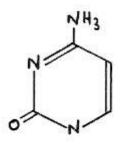

	Base composition, mole percent				Base ratios			Asymmetry ratio
Animals	А	G	С	Т	A/T	G/C	Pu/Py	$\frac{A + T}{G + C}$
Man	30.9	10.0	10.0	20.4	1 05	1 00	1.04	1 50
Sheep	29.3	$19.9 \\ 21.4$	19.8	29.4	1.05	1.00.	1.04	1.52
Hen	28.8	20.5	21.0 21.5	28.3 29.2	1.03 1.02	1.02 0.95	1.03 0.97	1.36
Turtle	20.0	20.5	21.5	29.2	1.02	1.03	1.00	1.38 1.31
Salmon	29.7	20.8	20.4	27.9	1.03	1.03		1.31
Sea urchin	32.8	17.7	17.3	32.1	1.02	1.02	1.02	1.43
Locust	29.3	20.5	20.7	29.3	1.02	1.02	1.02	1.41
Plants	5010	20.0	20.7	20.0	1.00	1.00	1.00	1.11
Wheat germ	27.3	22.7	22.8	27.1	1.01	1.00	1.00	1.19
Yeast	31.3	18.7	17.1	32.9	0.95	1.00	1.00	1.79
Aspergillus niger (mold)	25.0	25.1	25.0	24.9	1.00	1.09	1.00	1.00
Bacteria	20.0	20.1	20.0	21.0	1.00	1.00	1.00	1.00
E. coli	24.7	26.0	25.7	22.6	1.04	1.01	1.03	0.00
Staphylococcus aureus	30.8	20.0	25.7	23.6 29.2	1.04	1.11	1.07	0.93
Clostridium perfringens	36.9	14.Õ	12.8	36.3	1.03	1.09	1.04	1.50
Brucella abortus	21.0	29.0	28.9	21.1	1.00	1.00	1.00	2.70 0.72
Sarcina lutea	13.4	37.1	37.1	12.4	1.08	1.00	1.04	0.35
Bacteriophages		07.1	07.1	12.1	1.00	2.00		0100
T7	26.0	24.0	24.0	26.0	1.00	1.00	1 00	1.08
λ	21.3	28.6	27.2	20.0	0.92	1.00	1.00	0.79
ϕ X174, viral	24.6	24.1	18.5	32.7	0.92	1.30	1.00 0.95	1.34
ϕ X174, replicative	26.3	22.3	22.3	26.4	1.00	1.00	1.00	1.18

Wilkins & Franklin (1952): X-ray crystallography

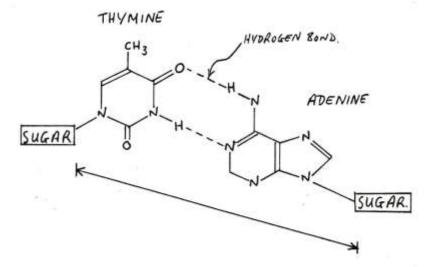


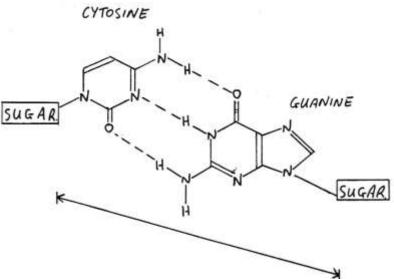
© Norman Collection on the History of Molecular Biology in Novato, CA


Purines & Pyrimidines


Adenine

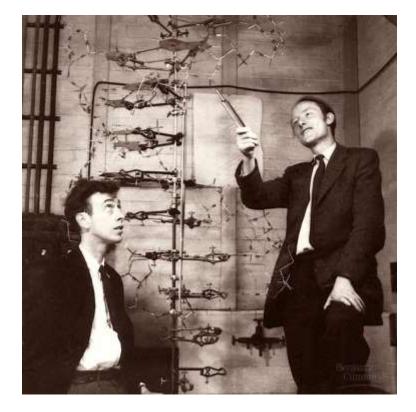
Guanine




Thymine

Cytosine

Watson & Crick Base pairing



The Double Helix (1953)

© Dr Kalju Kahn USBC Chemistry and Biochemistry

Public Domain image