

Figure 1-17 Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

The Steps in Information flow

Definition of gene: A segment of DNA specifying a protein (via mRNA), a rRNA or a tRNA
The information in the gene is present as the sequence of bases in the DNA: purines ($\mathrm{A} \& \mathrm{G}$) and pyrimidines ($\mathrm{T} \& \mathrm{C}$)

Pyrimidine

Cytosine (C)
(T)

DNA
only
Uracil
(U)

RNA
only
(a)

Purine bases

DNA
RNA

Adenine
(A)
(G)

DNA
DNA
RNA
(b)

DNA structure

DNA is a double-stranded molecule that forms a helical configuration and is measured in terms of numbers of base pairs. The complementarity of DNA arises from the specific pairing of the purine and pyrimidine bases.

Watson and Crick, 1953 Nobel prize in Physiology and Medicine, 1962

Specific pairing between adenine (A) and thymine (T) and between guanine (G) and cytosine (C) via hydrogen bonds. C and T are pyrimidine bases. A and G are purine bases.

The length of a DNA molecule is usually expressed in number of base pairs. Kb: kilobase (1,000 bases). Mb: megabase (one million bases).
Example: P. aeruginosa genome: 6.26 Mb

Complementary and antiparallel nature of DNA. Note that one chain ends in a 5'-phosphate group, whereas the other ends in a free 3'-hydroxyl.

Part of a letter written by Jim Watson to Max Delbruck in which he explains the double helix.

March 12, 1953

UNIVERSITY OF CAMBRIDGE DEPARTMENT OF PHYSICS


```
    Tie masei toe beon semutat i,tiely from stroctemicial cons,genations with the o.l
```



```
hawi.a.
```



```
Celloge honcton wis posess verd exceltost gintogugls of a engractiv pese is eaxition is
```


DNA Structure: Supercoiling

A solution to pack a large amount of DNA into small cells or viral particles

(a) Relaxed circular DNA

(c) Supercoiled circular DNA

How long is the DNA of E. coli?

What is the volume of an E. coli cell?

The very long DNA molecule can be packaged into the cell Break one strand.

(e)
(d) Chromosomal DNA with supercoiled domains

Supercoiled DNA. Parts a, b and c show supercoiled circular DNA and relaxed, nicked circular DNA interconversions. A nick is a break in a phosphodiester bond of one strand. (d) In actuality, the double-stranded DNA in the bacterial chromosome is arranged not in one supercoil but in several supercoiled domains, as shown here.

DNA Structure: Supercoiling (cont.)

In prokaryotes, this supercoiling is produced by enzymes called topoisomerases

(a)
© 2018 Pearson Education, Inc.

Supercoiled
DNA

Introduction of supercoiling into a circular DNA by activity of topoisomerase II, a DNA gyrase, which makes double-strand breaks. The enzyme reverse gyrase introduces positive supercoils, and it is found in hyperthermophilic Archaea.
Supercoiling is known to affect gene expression.

Synthesis of the three types of informational molecules

Synthesis of the three types of informational macromolecules. Note that in any particular region, only one of the two strands of the DNA double helix is transcribed. Note the linear correspondence between the base sequence of a gene and the amino acid sequence: three bases on a mRNA molecule (codon) encode a single amino acid.

The chromosome of Escherichia coli strain K-12

Figure 4.8

The bacterial chromosome and plasmids (arrows)

In addition to the chromosome, a number of other genetic elements exist in cells

TABLE 4.1 Kinds of genetic elements

Organism	Element	Type of nucleic acid	Description
Virus	Virus genome	Single- or double-stranded DNA or RNA	Relatively short, circular or linear
Bacteria/Archaea	Chromosome	Double-stranded DNA	Extremely long, usually circular
Eukaryote	Chromosome	Double-stranded DNA	Extremely long, linear
Mitochondrion or chloroplast	Organellar genome	Double-stranded DNA	Medium length, usually circular
All organisms	Plasmid	Relatively short circular or linear, extrachromosomal	
All organisms	Transposable element	Double-stranded DNA	Always found inserted into another DNA molecule

aplasmids are uncommon in eukaryotes.
© 2018 Pearson Education, Inc.

Plasmids are DNA molecules that exist separately from the chromosome of the cell.
Transposable elements are molecules of DNA that can move from one site on a chromosome to another.

Mitochondria and chloroplasts contain their own DNA chromosomes.
Viruses contain a genome, either DNA or RNA, that controls their own replication.

table 4.2 Major enzymes that participate in DNA replication in Bacteria

Enzyme	Encoding genes	Function
DNA gyrase	gyrAB	Replaces supercoils ahead of replisome
Origin-binding protein	$d n a A$	Binds origin of replication to open double helix
Helicase loader	dnaC	Loads helicase at origin
Helicase	dnaB	Unwinds double helix at replication fork
Single-strand binding protein	ssb	Prevents single strands from annealing
Primase	dnaG	Primes new strands of DNA
DNA polymerase III		Main polymerizing enzyme
Sliding clamp	dnaN	Holds Pol Ill on DNA
Clamp loader	holA-E	Loads Pol III onto sliding clamp
Dimerization subunit (Tau)	dnaX	Holds together the two core enzymes for the leading and lagging strands
Polymerase subunit	dnaE	Strand elongation
Proofreading subunit	dnaQ	Proofreading
DNA polymerase I	polA	Excises RNA primer and fills in gaps
DNA ligase	$\operatorname{lig} A, \operatorname{lig} B$	Seals nicks in DNA
Tus protein	tus	Binds terminus and blocks progress of the replication fork
Topoisomerase IV	parCE	Unlinking of interlocked circles

O 2018 Pearson Education, Inc.

DNA Replication

Both strands of the DNA helix serve as templates for the synthesis of two new strands (semiconservative replication)s

Meselson and Stahl, 1958

The two progeny double helices each contain one parental strand and one new strand (semiconservative). The new strands are elongated by addition to the 3^{\prime} end

(a) DNA replication is a semiconservative process in both prokaryotes and eukaryotes. Note that the new double helices each contain one new and one old strand. (b) Structure of the DNA chain and mechanism of growth by addition from a deoxyribonucleoside triphosphate at the 3^{\prime}-end of the chain. Growth always proceeds from the 5'-phosphate to the 3^{\prime}-hydroxyl end, the $5^{\prime}-\mathrm{P}$ of the incoming nucleotide being attached to the $3^{\prime}-\mathrm{OH}$ of the previously added nucleotide. The enzyme DNA polymerase catalyzes the addition reaction.

Models of DNA Replication

a) Semiconservative model

© 2010 Pearson Education, Inc.
b) Conservative model

c) Dispersive model

Experiment

Question: Which model of DNA replication-conservative, dispersive, or semiconservative-applies to E. coli?

Conclusion: DNA replication in E.coli is semiconservative.

DNA Replication (cont.)

DNA polymerases require a primer, which is composed of RNA. This short segment is synthesized by the enzyme primase. No known DNA polymerase can begin a new chain without a primer. All these enzymes can only add a nucleotide to a preexisting 3' - OH group.
Hence, the necessity for a primer.

Extension of the DNA occurs continuously on the leading strand but discontinuously on the lagging strand

Events at the DNA replication fork. Note the polarity and antiparallel nature of the DNA strands. The substrates for primase are ribonucleotide triphosphates, while for DNA polymerase, they are deoxyribonucleotide triphosphates.

DNA Replication (cont.)

During DNA replication the mutation rate is low ($10^{-8}-10^{-11}$ errors per base pair inserted)
Proofreading: mismatch repair

Sealing two fragments on the lagging strand. (a) DNA polymerase III is synthesizing DNA in the $5^{\prime} \rightarrow 3$ direction toward the RNA primer of a previously synthesized fragment on the lagging strand. (b) On reaching the fragment, DNA polymerase I replaces III. (c) DNA polymerase I continues synthesizing DNA while removing the RNA primer from the previous fragment. (d) DNA ligase replaces DNA polymerase I after the primer has been removed. (e) DNA ligase seals the two fragments together.

TABLE 4.2 Major enzymes that participate in DNA replication in Bacteria		
Enzyme	Encoding genes	Function
DNA gyrase	gyrAB	Replaces supercoils ahead of replisome
Origin-binding protein	dnaA	Binds origin of replication to open double helix
Helicase loader	dnaC	Loads helicase at origin
Helicase	dnaB	Unwinds double helix at replication fork
Single-strand binding protein	ssb	Prevents single strands from annealing
Primase	dnaG	Primes new strands of DNA
DNA polymerase III		Main polymerizing enzyme
Sliding clamp	dnaN	Holds Pol Ill on DNA
Clamp loader	holA-E	Loads Pol III onto sliding clamp
Dimerization subunit (Tau)	dnaX	Holds together the two core enzymes for the leading and lagging strands
Polymerase subunit	dnaE	Strand elongation
Proofreading subunit	dnaQ	Proofreading
DNA polymerase I	polA	Excises RNA primer and fills in gaps
DNA ligase	$\operatorname{lig} A, \operatorname{lig} B$	Seals nicks in DNA
Tus protein	tus	Binds terminus and blocks progress of the replication fork
Topoisomerase IV	parCE	Unlinking of interlocked circles

RNA synthesis: Transcription

The three major types of RNA:

Messenger RNA (mRNA): contains the genetic information to encode one or more polypeptides. Its role is at the genetic level, by carrying the genetic information from the DNA.

Transfer RNA (tRNA): an adaptor molecule used in translation that has specificity for both a particular amino acid and for one or more codons. Its role is at the functional and structural levels.

Ribosomal RNA (rRNA): types of RNA found in the ribosome (functional and structural roles).

Transcription

Transcription of RNA from DNA involves the enzyme RNA polymerase, which adds bases onto the 3' ends of growing chains.

Unlike DNA polymerase, RNA polymerase needs no primer and recognizes a specific start site on the DNA called the promoter

Steps in RNA synthesis.
The initiation and termination sites are specific nucleotide sequences on the DNA.
The sigma factor allows RNA polymerase to recognize the initiation site (the promoter).
Which strand of the DNA is transcribed is determined by the orientation of the promoter sequence.
The sigma factor is released during elongation.
RNA polymerase moves down the DNA chain, causing temporary opening of the double helix and transcription of one of the DNA strands. When a termination site is reached, chain growth stops, and the mRNA and polymerase are released.

Figure 4.19b

The interaction of RNA polymerase with the promoter

In Bacteria, promoters are recognized by the sigma subunit of RNA polymerase. Promoters recognized by a specific sigma factor have very similar sequences.

Shown below the diagram are six different promoter sequences identified in Escherichia coli , a species of Bacteria. The contacts of the RNA polymerase with the -35 sequence and the Pribnow box (-10 sequence) are shown. Transcription begins at a unique base just downstream from the Pribnow box. Strong promoters are most like the consensus and are more effective in binding the RNA polymerase.

TABLE 4.3 Sigma factors in Escherichia coli

Name ${ }^{\text {a }}$	Upstream recognition sequence ${ }^{\text {b }}$	Function
$\sigma^{70} \mathrm{RpoD}$	TTGACA	For most genes, major sigma factor for normal growth
$\sigma^{54} \mathrm{RpoN}$	TTGGCACA	Nitrogen assimilation
$\sigma^{38} \mathrm{RpoS}$	CCGGCG	Stationary phase, plus oxidative and osmotic stress
$\sigma^{32} \mathrm{RpoH}$	TNTCNCCTTGAA	Heat shock response
$\sigma^{28} \mathrm{FliA}$	TAAA	For genes involved in flagella synthesis
$\sigma^{24} \mathrm{RpoE}$	GAACTT	Response to misfolded proteins in periplasm
$\sigma^{19} \mathrm{Fecl}$	AAGGAAAAT	For certain genes in iron transport

[^0]
RNA polymerase from the three domains

Archaea
11-12 subunits

Eukarya
12 or more subunits

!weyeanw nsłey

Promoter Architecture and Transcription in Archaea

Transcription Termination

RNA polymerase stops transcription at specific sites called transcription terminators. Inverted repeats in transcribed DNA lead to formation of a stem-loop structure in the RNA, which can result in termination of transcription.

Unit of Transcription: The Operon

The unit of transcription often contains more than a single gene. Transcription of several genes into a single mRNA molecule may occur in prokaryotes, and so the mRNA may contain the information for more than one polypeptide

Fig. 4.35 Operon and polycistronic mRNA structure in prokaryotes

Cracking the Genetic Code

Marshall Nirenberg and Gobind Khorana, 1966
Nobel prize in Physiology and Medicine, 1968

The genetic code is expressed in terms of RNA, and a single amino acid may be encoded by several different but related codons. A codon is recognized following specific base-pairing with a sequence of three bases on a tRNA called the anticodon.
A few codons, called nonsense codons, do not encode an amino acid. In addition to the nonsense codons, there is also a specific start codon that signals where the translation process should begin.
Some tRNAs can recognize more than one codon.
TABLE 4.4 The genetic code as expressed by triplet base sequences of mRNA

Codon	Amino acid						
UUU	Phenylalanine	UCU	Serine	UAU	Tyrosine	UGU	Cysteine
UUC	Phenylalanine	UCC	Serine	UAC	Tyrosine	UGC	Cysteine
UUA	Leucine	UCA	Serine	UAA	None (stop signal)	UGA	None (stop signal)
UUG	Leucine	UCG	Serine	UAG	None (stop signal)	UGG	Tryptophan
CUU	Leucine	CCU	Proline	CAU	Histidine	CGU	Arginine
CUC	Leucine	CCC	Proline	CAC	Histidine	CGC	Arginine
CUA	Leucine	CCA	Proline	CAA	Glutamine	CGA	Arginine
CUG	Leucine	CCG	Proline	CAG	Glutamine	CGG	Arginine
AUU	Isoleucine	ACU	Threonine	AAU	Asparagine	AGU	Serine
AUC	Isoleucine	ACC	Threonine	AAC	Asparagine	AGC	Serine
AUA	Isoleucine	ACA	Threonine	AAA	Lysine	AGA	Arginine
AUG (start) ${ }^{\text {a }}$	Methionine	ACG	Threonine	AAG	Lysine	AGG	Arginine
GUU	Valine	GCU	Alanine	GAU	Aspartic acid	GGU	Glycine
GUC	Valine	GCC	Alanine	GAC	Aspartic acid	GGC	Glycine
GUA	Valine	GCA	Alanine	GAA	Glutamic acid	GGA	Glycine
GUG	Valine	GCG	Alanine	GAG	Glutamic acid	GGG	Glycine

[^1]
Base pairing between codon and anticodon.

When tRNAs can recognize more than one codon, tRNA molecules form standard base pairs only at the first two positions of the codon, while tolerating irregular base pairing at the third position. This apparent mismatch phenomenon is called wobble.

© 2015 Pearson Education, Inc
The wobble concept: base pairing is more flexible for the third base of the codon. Only a portion of the tRNA is shown

Possible reading frames in a mRNA

It is important to have a precise starting point because with a triplet code, it is critical that translation begin at the correct location. If it does not, the whole reading frame will be shifted and an entirely different protein (or no protein at all) will be formed

(a) Correct frame (0)

(b) Incorrect AAG)A UAGGGAUGAG frame (-1)

© 2015 Pearson Education, Inc.

An interior sequence of an mRNA is shown. The "correct" (or 0) reading frame is determined by the start codon of the mRNA. (a) The amino acids that would be encoded by this region of the mRNA if the ribosome were in the -1 reading frame. (b) The amino acids that would be encoded if the ribosome were in the correct reading frame. (c) The amino acids that would be encoded if the ribosome were in the +1 reading frame.

Structure of a transfer RNA (tRNA)

An adaptor molecule used in translation that has specificity for both a particular amino acid and for one or more codons

Yeast phenylalanine tRNA. (a) The conventional cloverleaf structure. The amino acid is attached to the ribose of the terminal A at the acceptor end. A, adenine; C, cytosine; U, uracil; G, guanine; ψ, pseudouracil; D, dihydrouracil; m, methyl; Y, a modified purine. (b) In actuality the molecule folds so that the D loop and $\mathrm{T} \psi \mathrm{C}$ loops are close together and associate by hydrophobic interactions.

Charging of a tRNA: Aminoacyl-tRNA synthetases

Enzymes called aminoacyl-tRNA synthetases attach an amino acid to a tRNA

(a)
(b)
© 2018 Pearson Education, Inc.
(a) Action of an aminoacyl-tRNA synthetase. Recognition of the correct tRNA by a particular synthetase involves contacts between specific nucleic acid sequences and specific amino acids of the synthetase. In this diagram, valyl-tRNA synthetase is shown catalyzing the final step of the reaction, where the valine in valyl-AMP is transferred to tRNA.

The ribosome plays a key role in the translation process, bringing together mRNA and aminoacyl tRNAs

TABLE 7.4 Ribosome structure ${ }^{a}$

Property

Overall size
 Small subunit
 Number of proteins
 RNA size (number of bases)
 Large subunit
 Number of proteins
 RNA size (number of bases)

Prokaryote

70S
30S
~21
16S (1500)

50S
~34
23S (2900)
5 S (120)

Eukaryote

80S
40S
~30
18S (2300)
60 S
~50
28 S (4200)
5.8S (160)

5 S (120)
"Ribosomes of mitochondria and chloroplasts of eukaryotes are similar to prokaryotic ribosomes (000 Section 14.4).

Translation: Protein Synthesis

TRANSLATION: Initiation

Shine-Dalgarno sequence: Involved in binding of the mRNA to the ribosome (ribosome binding site)

Located at the 5^{\prime}-end of the mRNA, it is complementary to the 3 ' -end of the 16 S rRNA of the ribosome

TRANSLATION: Elongation

Translation: Protein Synthesis (cont.)

Several ribosomes can translate a single mRNA molecule simultaneously, forming a complex called a polysome

© 2015 Pearson Education, Inc.
Translation by several ribosomes on a single messenger RNA (polysome). Note how the ribosomes nearest the 5^{\prime}-end of the message are at an earlier stage in the translation process.

Antibiotics that inhibit protein synthesis:
Streptomycin (initiation)
Puromycin, Chloramphenicol, Cycloheximide, Tetracycline (elongation)
\square
Figure 4.38

Distinguish between DNA synthesis on a leading and on a

 lagging strand, addressing the different mechanisms of initiation and elongation of the DNA strand.
[^0]: ${ }^{\text {a }}$ Superscript number indicates size of protein in kilodaltons. Many factors also have other names, for example, σ^{70} is also called σ^{D}.
 ${ }^{\mathrm{b}} \mathrm{N}=$ any nucleotide.

[^1]: ${ }^{\text {a }}$ AUG encodes N-formylmethionine at the beginning of polypeptide chains of Bacteria.

