

Figure 1-17 Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

The Steps in Information flow

Definition of gene: A segment of DNA specifying a protein (via mRNA), a rRNA or a tRNA The information in the gene is present as the <u>sequence of bases in the DNA</u>: purines (A & G) and pyrimidines (T & C)

(a) © 2018 Pearson Education, Inc.

Figure 4.1

© 2015 Pearson Education, Inc.

DNA structure

Cytosine

Thymine

Backbone

Backbone

DNA is a double-stranded molecule that forms a helical configuration and is measured in terms of numbers of base pairs. The complementarity of DNA arises from the specific pairing of the purine and pyrimidine bases.

·····H—

0…,…H− N

Hydrogen H

bond

0

- H·

CH₃

Specific pairing between adenine (A) and thymine (T) and between guanine (G) and cytosine (C) via hydrogen bonds. C and T are <u>pyrimidine</u> bases. A and G are <u>purine</u> bases.

Hydrogen

bond

The length of a DNA molecule is usually expressed in number of base pairs. Kb: kilobase (1,000 bases). Mb: megabase (one million bases). Example: *P. aeruginosa* genome: 6.26 Mb

Complementary and <u>antiparallel</u> nature of DNA. Note that one chain ends in a 5'-phosphate group, whereas the other ends in a free 3'-hydroxyl.

UNIVERSITY OF CAMBRIDGE DEPARTMENT OF PHYSICS

while my disquée is cruche, is fact these gaves form 2 only once hydrogen boods in which all of the angles are exactly right. This priving is based on the effective materies of only one but at the two possible tautometric forms -is all cases we grader the trate form and the ends

and the annual over the muits. The is a definitively on assumption but doing Densive and Bill Contract that is that, for all organic hotecars so far acounted, there the batt and annual forms are present in preference to the first and units pressentities.

The model has been denness entirely from struction real considerations with the only shooly consideration being the epocing of the point of here 3.40 which was obliganing found by Automy. 14 true & build itself with appartmetely 10 branders / point them in 34 A. The article is object hashed.

The solary pattern approximately agrees with the headed, but since the plotsupple exclusive these are poor and magnel we have no protigraphs about own and like theiring must are dethings pholographs) "this agreement doe it no way constitutes a proof about models. We are containly a long way from proving the convectment. To do this we proof about models. We are containly a long way from proving the convectment. To do this we proof about adders contrained would be with graph at Kings contraction who preserve why received protocologically prode it establishes to both good proving the convectment of a proving termine prove. One made has been made it estimates to the processing from and as get we have no close price as to be for these holices can

Part of a letter written by Jim Watson to Max Delbruck in which he explains the double helix.

March 12, 1953

DNA Structure: Supercoiling A solution to pack a large amount of DNA into small cells or viral particles

How long is the DNA of *E. coli*?

What is the volume of an *E. coli* cell?

The very long DNA molecule can be packaged into the cell because it is supercoiled

(e)

(a) Relaxed circular DNA Break one strand. Nick Relaxed nicked circular DNA Proteins Rotate one end of broken strand around helix and seal. © 2018 Pearson Education. In (c) Supercoiled circular DNA 2018 Pearson Education. Inc (d) Chromosomal DNA with supercoiled domains

Supercoiled DNA. Parts a, b and c show supercoiled circular DNA and relaxed, nicked circular DNA interconversions. A nick is a break in a phosphodiester bond of one strand. (d) In actuality, the double-stranded DNA in the bacterial chromosome is arranged not in one supercoil but in several supercoiled domains, as shown here.

© 2018 Pearson Education, Inc.

DNA Structure: Supercoiling (cont.)

In prokaryotes, this supercoiling is produced by enzymes called topoisomerases

© 2018 Pearson Education, Inc.

Introduction of supercoiling into a circular DNA by activity of <u>topoisomerase II</u>, a DNA gyrase, which makes double-strand breaks. The enzyme <u>reverse gyrase</u> introduces <u>positive supercoils</u>, and it is found in hyperthermophilic Archaea. Supercoiling is known to affect gene expression.

Synthesis of the three types of informational molecules

The bacterial chromosome and plasmids (arrows)

The chromosome of Escherichia coli strain K-12

Figure 4.8

In addition to the chromosome, a number of other genetic elements exist in cells

TABLE 4.1 Kinds of genetic elements

Organism	Element	Type of nucleic acid	Description
Virus	Virus genome	Single- or double-stranded DNA or RNA	Relatively short, circular or linear
Bacteria/Archaea	Chromosome	Double-stranded DNA	Extremely long, usually circular
Eukaryote	Chromosome	Double-stranded DNA	Extremely long, linear
Mitochondrion or chloroplast	Organellar genome	Double-stranded DNA	Medium length, usually circular
All organisms	Plasmid ^a	Double-stranded DNA	Relatively short circular or linear, extrachromosomal
All organisms	Transposable element	Double-stranded DNA	Always found inserted into another DNA molecule

^aPlasmids are uncommon in eukaryotes.

© 2018 Pearson Education, Inc.

Plasmids are DNA molecules that exist separately from the chromosome of the cell.

Transposable elements are molecules of DNA that can move from one site on a chromosome to another.

Mitochondria and chloroplasts contain their own DNA chromosomes.

Viruses contain a genome, either DNA or RNA, that controls their own replication.

© 2015 Pearson Education, Inc.

TABLE 4.2Major enzymes that participate in DNA
replication in *Bacteria*

Enzyme	Encoding genes	Function
DNA gyrase	gyrAB	Replaces supercoils ahead of replisome
Origin-binding protein	dnaA	Binds origin of replication to open double helix
Helicase loader	dnaC	Loads helicase at origin
Helicase	dnaB	Unwinds double helix at replication fork
Single-strand binding protein	ssb	Prevents single strands from annealing
Primase	dnaG	Primes new strands of DNA
DNA polymerase III		Main polymerizing enzyme
Sliding clamp	dnaN	Holds Pol III on DNA
Clamp loader	holA–E	Loads Pol III onto sliding clamp
Dimerization subunit (Tau)	dnaX	Holds together the two core enzymes for the leading and lagging strands
Polymerase subunit	dnaE	Strand elongation
Proofreading subunit	dnaQ	Proofreading
DNA polymerase I	polA	Excises RNA primer and fills in gaps
DNA ligase	ligA, ligB	Seals nicks in DNA
Tus protein	tus	Binds terminus and blocks progress of the replication fork
Topoisomerase IV	parCE	Unlinking of interlocked circles

Figure 4.10

© 2018 Pearson Education, Inc.

DNA Replication

Both strands of the DNA helix serve as templates for the synthesis of two new strands (semiconservative replication)s

Meselson and Stahl, 1958

The two progeny double helices each contain one parental strand and one new strand (semiconservative). The new strands are elongated by addition to the 3' end

(a) DNA replication is a semiconservative process in both prokaryotes and eukaryotes. Note that the new double helices each contain one new and one old strand. (b) Structure of the DNA chain and mechanism of growth by addition from a deoxyribonucleoside triphosphate at the 3´-end of the chain. Growth always proceeds from the 5´-phosphate to the 3´-hydroxyl end, the 5'-P of the incoming nucleotide being attached to the 3'-OH of the previously added nucleotide. The enzyme DNA polymerase catalyzes the addition reaction.

Models of DNA Replication

© 2010 Pearson Education, Inc.

Conclusion: DNA replication in E.coli is semiconservative.

DNA Replication (cont.)

DNA polymerases require a **primer**, which is composed of RNA. This short segment is synthesized by the enzyme **primase**. No known DNA polymerase can begin a new chain without a primer. All these enzymes can only add a nucleotide to a preexisting 3'-OH group. Hence, the necessity for a primer.

Extension of the DNA occurs <u>continuously</u> on the leading strand but <u>discontinuously</u> on the lagging strand

Events at the DNA <u>replication fork</u>. Note the polarity and antiparallel nature of the DNA strands. The substrates for <u>primase</u> are ribonucleotide triphosphates, while for <u>DNA</u> <u>polymerase</u>, they are deoxyribonucleotide triphosphates.

DNA Replication (cont.)

Sealing two fragments on the lagging strand. (a) <u>DNA</u> <u>polymerase III</u> is synthesizing DNA in the $5^{\prime} \rightarrow 3^{\prime}$ direction toward the RNA primer of a previously synthesized fragment on the lagging strand. (b) On reaching the fragment, <u>DNA polymerase I</u> replaces III. (c) **DNA polymerase I continues synthesizing DNA** while removing the RNA primer from the previous fragment. (d) <u>DNA ligase</u> replaces DNA polymerase I after the primer has been removed. (e) DNA ligase seals the two fragments together.

(e)

© 2015 Pearson Education Inc.

Proofreading by the $3^{\prime} \rightarrow 5^{\prime}$ exonuclease activity of <u>DNA polymerase III</u>. (a) A mismatch in base pairing at the terminal base pair causes the polymerase to pause briefly. This is a signal for the proofreading activity (b) to excise the mismatched nucleotide, after which the correct base is incorporated (c) by polymerase activity.

TABLE 4.2Major enzymes that participate in DNA
replication in *Bacteria*

Enzyma	Encoding	Function
Enzyme	genes	Function
DNA gyrase	gyrAB	Replaces supercoils ahead of replisome
Origin-binding protein	dnaA	Binds origin of replication to open double helix
Helicase loader	dnaC	Loads helicase at origin
Helicase	dnaB	Unwinds double helix at replication fork
Single-strand binding protein	ssb	Prevents single strands from annealing
Primase	dnaG	Primes new strands of DNA
DNA polymerase III		Main polymerizing enzyme
Sliding clamp	dnaN	Holds Pol III on DNA
Clamp loader	holA–E	Loads Pol III onto sliding clamp
Dimerization subunit (Tau)	dnaX	Holds together the two core enzymes for the leading and lagging strands
Polymerase subunit	dnaE	Strand elongation
Proofreading subunit	dnaQ	Proofreading
DNA polymerase I	polA	Excises RNA primer and fills in gaps
DNA ligase	ligA, ligB	Seals nicks in DNA
Tus protein	tus	Binds terminus and blocks progress of the replication fork
Topoisomerase IV	parCE	Unlinking of interlocked circles

© 2018 Pearson Education, Inc.

RNA synthesis: Transcription

The three major types of RNA:

Messenger RNA (mRNA): contains the genetic information to encode one or more polypeptides. Its role is at the <u>genetic</u> level, by carrying the genetic information from the DNA.

Transfer RNA (tRNA): an adaptor molecule used in translation that has specificity for both a particular amino acid and for one or more codons. Its role is at the <u>functional</u> and <u>structural</u> levels.

Ribosomal RNA (rRNA): types of RNA found in the ribosome (functional and structural roles).

Transcription

Transcription of RNA from DNA involves the enzyme **RNA polymerase**, which adds bases onto the 3' ends of growing chains.

Unlike DNA polymerase, RNA polymerase **needs no primer** and recognizes a specific start site on the DNA called the **promoter**

Steps in RNA synthesis.

The initiation and termination sites are specific nucleotide sequences on the DNA.

The <u>sigma factor</u> allows <u>RNA polymerase</u> to recognize the initiation site (the <u>promoter</u>).

Which strand of the DNA is transcribed is determined by the orientation of the promoter sequence.

The sigma factor is released during elongation.

<u>RNA polymerase</u> moves down the DNA chain, causing temporary opening of the double helix and transcription of one of the DNA strands. When a <u>termination site</u> is reached, chain growth stops, and the mRNA and polymerase are released.

Transcription direction

The interaction of RNA polymerase with the promoter

In *Bacteria,* promoters are recognized by the sigma subunit of RNA polymerase. Promoters recognized by a specific sigma factor have very similar sequences.

Shown below the diagram are six different promoter sequences identified in *Escherichia coli*, a species of *Bacteria*. The contacts of the RNA polymerase with the -35 sequence and the Pribnow box (-10 sequence) are shown. Transcription begins at a unique base just downstream from the Pribnow box. Strong promoters are most like the consensus and are more effective in binding the RNA polymerase.

TABLE 4.3 Sigma factors in Escherichia coli

Name ^a	Upstream recognition sequence ^b	Function
σ^{70} RpoD	TTGACA	For most genes, major sigma factor for normal growth
σ^{54} RpoN	TTGGCACA	Nitrogen assimilation
$\sigma^{ m 38}$ RpoS	CCGGCG	Stationary phase, plus oxidative and osmotic stress
$\sigma^{ m 32}$ RpoH	TNTCNCCTTGAA	Heat shock response
σ^{28} FliA	ΤΑΑΑ	For genes involved in flagella synthesis
σ^{24} RpoE	GAACTT	Response to misfolded proteins in periplasm
σ^{19} Fecl	AAGGAAAAT	For certain genes in iron transport

^aSuperscript number indicates size of protein in kilodaltons. Many factors also have other names, for example, σ^{70} is also called σ^{D} .

 $^{b}N = any$ nucleotide.

© 2018 Pearson Education, Inc.

RNA polymerase from the three domains

Figure 4.20

Promoter Architecture and Transcription in Archaea

Transcription Termination

RNA polymerase stops transcription at specific sites called transcription terminators. Inverted repeats in transcribed DNA lead to formation of a stem-loop structure in the RNA, which can result in termination of transcription.

Figure 4.24

Unit of Transcription: The Operon

The unit of transcription often contains more than a single **gene**. Transcription of several genes into a single mRNA molecule may occur in prokaryotes, and so the mRNA may contain the information for more than one polypeptide

Fig. 4.35 Operon and polycistronic **mRNA** structure in prokaryotes

Cracking the Genetic Code

Marshall Nirenberg and Gobind Khorana, 1966 Nobel prize in Physiology and Medicine, 1968

The genetic code is expressed in terms of RNA, and a single amino acid may be encoded by several different but related **codons.** A codon is recognized following specific base-pairing with a sequence of three bases on a tRNA called the **anticodon**.

A few codons, called **nonsense codons**, do not encode an amino acid. In addition to the nonsense codons, there is also a specific start codon that signals where the translation process should begin.

Some tRNAs can recognize more than one codon.

TABLE 4.4 The genetic code as expressed by triplet base sequences of mRNA							
Codon	Amino acid	Codon	Amino acid	Codon	Amino acid	Codon	Amino acid
UUU	Phenylalanine	UCU	Serine	UAU	Tyrosine	UGU	Cysteine
UUC	Phenylalanine	UCC	Serine	UAC	Tyrosine	UGC	Cysteine
UUA	Leucine	UCA	Serine	UAA	None (stop signal)	UGA	None (stop signal)
UUG	Leucine	UCG	Serine	UAG	None (stop signal)	UGG	Tryptophan
CUU	Leucine	CCU	Proline	CAU	Histidine	CGU	Arginine
CUC	Leucine	ССС	Proline	CAC	Histidine	CGC	Arginine
CUA	Leucine	ССА	Proline	CAA	Glutamine	CGA	Arginine
CUG	Leucine	CCG	Proline	CAG	Glutamine	CGG	Arginine
AUU	Isoleucine	ACU	Threonine	AAU	Asparagine	AGU	Serine
AUC	Isoleucine	ACC	Threonine	AAC	Asparagine	AGC	Serine
AUA	Isoleucine	ACA	Threonine	AAA	Lysine	AGA	Arginine
AUG (start) ^a	Methionine	ACG	Threonine	AAG	Lysine	AGG	Arginine
GUU	Valine	GCU	Alanine	GAU	Aspartic acid	GGU	Glycine
GUC	Valine	GCC	Alanine	GAC	Aspartic acid	GGC	Glycine
GUA	Valine	GCA	Alanine	GAA	Glutamic acid	GGA	Glycine
GUG	Valine	GCG	Alanine	GAG	Glutamic acid	GGG	Glycine

^aAUG encodes N-formylmethionine at the beginning of polypeptide chains of Bacteria.

© 2018 Pearson Education, Inc.

Base pairing between codon and anticodon.

When tRNAs can recognize more than one codon, tRNA molecules form standard base pairs only at the first two positions of the codon, while tolerating irregular base pairing at the third position. This apparent mismatch phenomenon is called **wobble**.

The wobble concept: base pairing is more flexible for the third base of the codon. Only a portion of the tRNA is shown

Possible reading frames in a mRNA

It is important to have a precise starting point because with a triplet code, it is critical that translation begin at the correct location. If it does not, the whole reading frame will be shifted and an entirely different protein (or no protein at all) will be formed

An interior sequence of an mRNA is shown. The "correct" (or 0) reading frame is determined by the start codon of the mRNA. (a) The amino acids that would be encoded by this region of the mRNA if the ribosome were in the -1 reading frame. (b) The amino acids that would be encoded if the ribosome were in the correct reading frame. (c) The amino acids that would be encoded if the ribosome were in the correct reading frame. (c) The amino acids that would be encoded if the ribosome were in the correct reading frame.

Structure of a transfer RNA (tRNA)

An adaptor molecule used in translation that has specificity for both a particular amino acid and for one or more codons

Yeast phenylalanine tRNA. (a) The conventional cloverleaf structure. The amino acid is attached to the ribose of the terminal A at the acceptor end. A, adenine; C, cytosine; U, uracil; G, guanine; ψ , pseudouracil; D, dihydrouracil; m, methyl; Y, a modified purine. (b) In actuality the molecule folds so that the D loop and T ψ C loops are close together and associate by hydrophobic interactions.

Charging of a tRNA: Aminoacyl-tRNA synthetases

Enzymes called aminoacyl-tRNA synthetases attach an amino acid to a tRNA

© 2018 Pearson Education, Inc.

(a) Action of an <u>aminoacyl-tRNA synthetase</u>. Recognition of the correct tRNA by a particular synthetase involves contacts between specific nucleic acid sequences and specific amino acids of the synthetase. In this diagram, valyl-tRNA synthetase is shown catalyzing the final step of the reaction, where the valine in valyl-AMP is transferred to tRNA.

The **ribosome** plays a key role in the translation process, bringing together mRNA and aminoacyl tRNAs

TABLE 7.4 Ribosome structure ^a				
Property	Prokaryote	Eukaryote		
Overall size	70S	80S		
Small subunit	30S	40S		
Number of proteins	~21	~30		
RNA size (number of bases)	16S (1500)	18S (2300)		
Large subunit	50S	60S		
Number of proteins	~34	~50		
RNA size	235 (2900)	28S (4200)		
(number of bases)	5S (120)	5.8S (160)		
		55 (120)		

"Ribosomes of mitochondria and chloroplasts of eukaryotes are similar to prokaryotic ribosomes (Section 14.4).

Translation: Protein Synthesis

Translation: Protein Synthesis (cont.)

Several ribosomes can translate a single mRNA molecule simultaneously, forming a complex called a polysome

© 2015 Pearson Education, Inc.

Translation by several ribosomes on a single messenger RNA (polysome). Note how the ribosomes nearest the 5⁻end of the message are at an earlier stage in the translation process.

Antibiotics that inhibit protein synthesis:

Streptomycin (initiation) Puromycin, Chloramphenicol, Cycloheximide, Tetracycline (elongation)

Distinguish between DNA synthesis on a leading and on a lagging strand, addressing the different mechanisms of initiation and elongation of the DNA strand.