PowerPoint[®] Lecture Presentations

GLOBAL

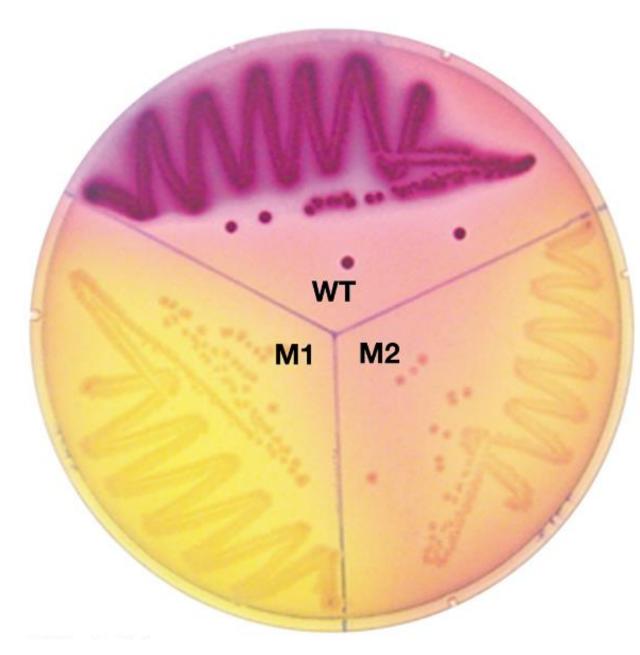
EDITION

CHAPTER 11

Genetics of *Bacteria* and *Archaea*

Brock Biology of Microorganisms

FIFTEENTH EDITION

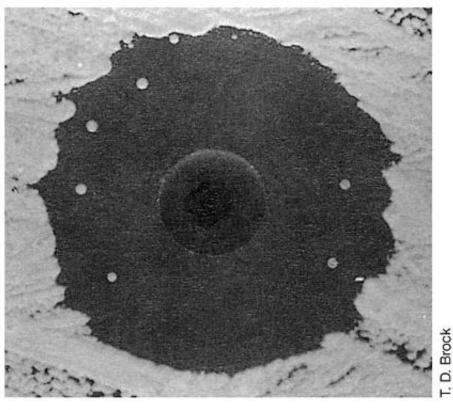

Madigan • Bender • Buckley • Sattley • Stahl

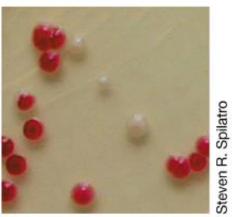
I. Mutation


- 11.1 Mutations and Mutants
- 11.2 Molecular Basis of Mutation
- 11.3 Reversions and Mutation Rates
- 11.4 Mutagenesis

- Mutation
 - heritable change in DNA sequence that can lead to a change in phenotype (observable properties of an organism)
- Wild-type strain
 - typically refers to strain isolated from nature
 - "Wild-type" can also refer to just one gene.
- Mutant
 - a cell or virus derived from wild type that carries a nucleotide sequence (genotype) change
 - Observable properties (*phenotype*) may also be altered (Figure 11.1).
 - can be obtained from *parental strain* derived from wild-type

WT Wild typeM1 Mutant 1M2 Mutant 2

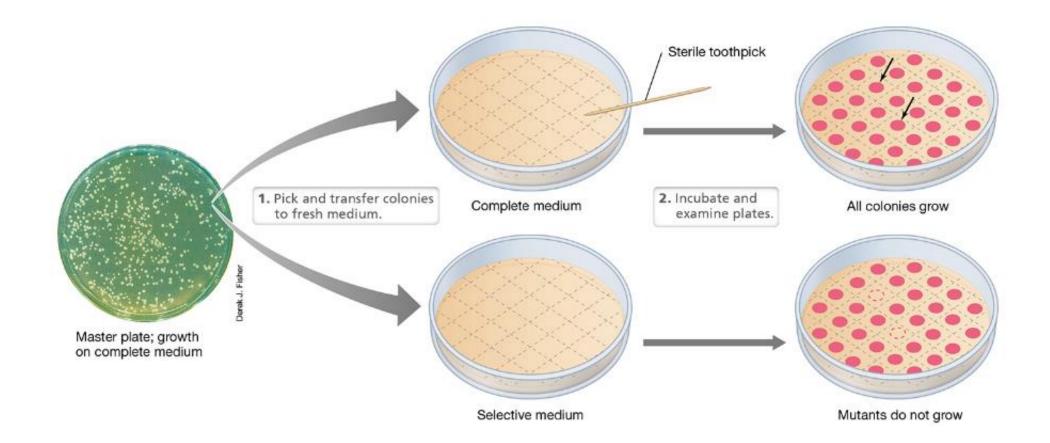

Howard Shuman and Thomas Silhavy


- Mutant strain may/may not differ in phenotype.
 - Genotype is designated by italicized (three lowercase letters + capital letter) for a gene (e.g., hisC).
 - Mutations are designated with numbers referring to order of isolation (*e.g.*, *hisC1*, *hisC2*).
 - Phenotype is designated by capital letter + two lowercase letters and +/- to indicate presence/absence (e.g., His⁺ or His⁻).

- Isolation of mutants: screening versus selection
 - Selectable mutations confer an advantage.
 - Under certain environmental conditions, progeny outgrow and replace parent.
 - example: antibiotic resistance (Figure 11.2*a*)
 - powerful genetic tool
 - Nonselectable mutations do not confer an advantage even though they may lead to a phenotypic change.
 - example: color loss in a pigmented organism (Figure 11.2b, c)
 - requires laborious, time-consuming screening (examining large numbers and looking for differences)

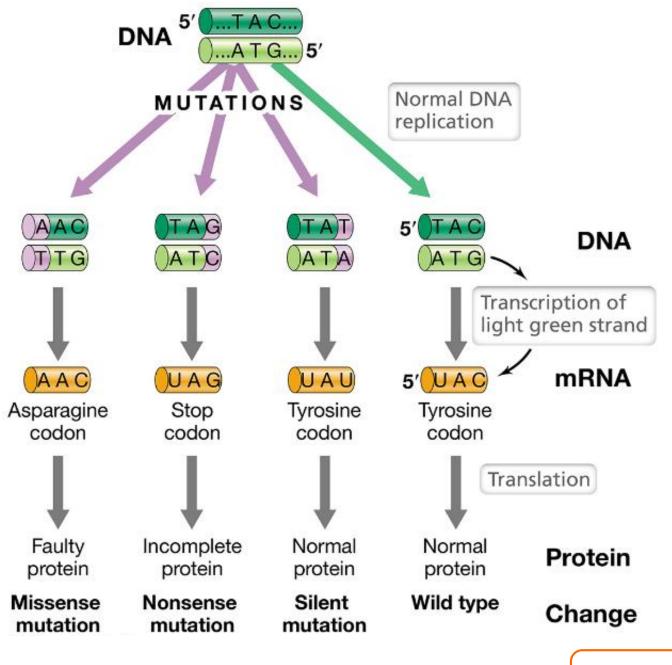
(a)

(b)


(c)

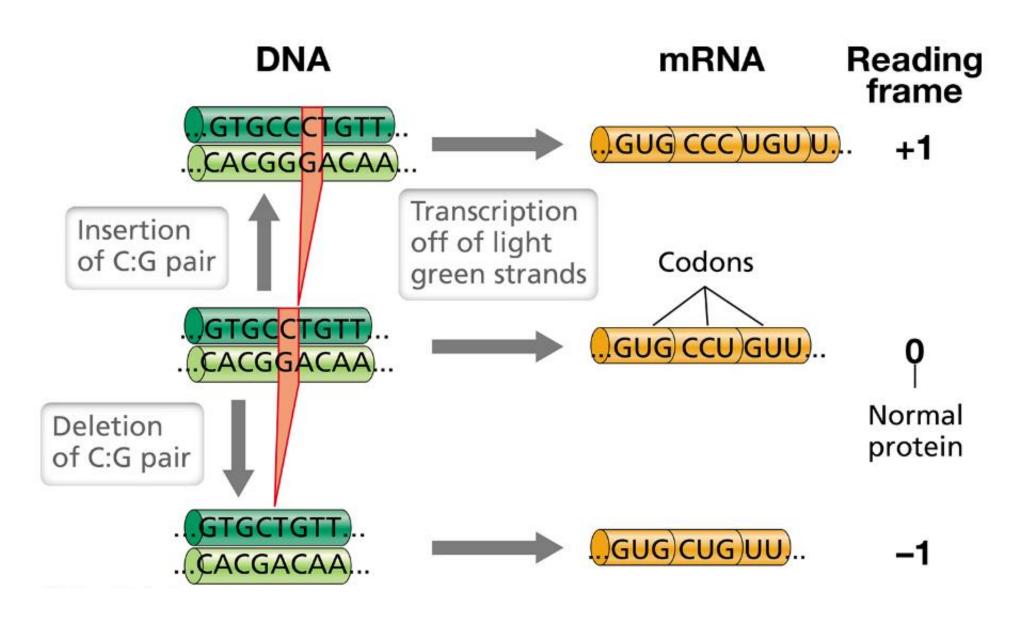
Shiladitya DasSarma, Priya Arora, Lone Simonsen

Figure 11.2


- Isolation of nutritional auxotrophs
 - Replica plating screens for nutritionally defective mutants. (Figure 11.3)
 - transfer colonies from master plate
 - Inability of colony to grow medium lacking a nutrient indicates mutation.
 - Colony on master plate is picked, purified, characterized.
 - Auxotroph has an additional nutritional requirement for growth (e.g., His⁻).
 - Parental strain is *prototroph* (*e.g.*, His⁺).

- Spontaneous mutations
 - those that occur without external intervention
 - Most result from occasional errors by DNA polymerase during replication.
- Induced mutations
 - those made environmentally and deliberately
 - can result from exposure to natural radiation or chemicals that chemically modify DNA
- Point mutations
 - mutations that change only one base pair
 - can lead to single amino acid change in a protein, an incomplete protein, or no change at all

- Base-pair substitutions: Missense, nonsense, and silent mutations (Figure 11.4)
 - Not all mutations change polypeptides due to degeneracy.
 - Silent mutations do not affect sequence of encoded polypeptide or phenotype.
 - almost always third base of codon
 - Missense mutation changes sequence of amino acids in polypeptide (*e.g.*, UAC to AAC).
 - if at a critical location, especially active site, could alter activity
 - Not all missense mutations lead to dysfunction.
 - Nonsense mutation leads to stop codon.
 - typically results in *truncated* (incomplete) protein that lacks normal activity

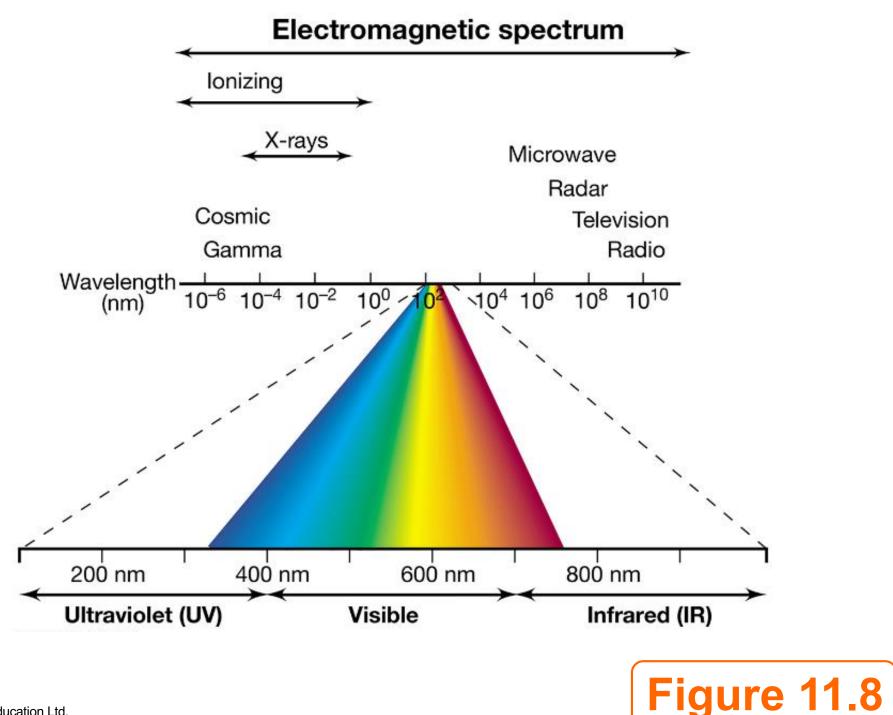


© 2019 Pearson Education Ltd.

- Base-pair substitutions: Missense, nonsense, and silent mutations (Figure 11.4)
 - Transitions are purines (A/G) substituted for other purines.
 - Transversions are purines substituted for pyrimidines
 (C/T) or vice versa.

- Frameshifts and other insertions or deletions
 - frameshift mutations (Figure 11.5)
 - deletions or insertions that result in a shift in the reading frame
 - Insertion/deletion of three base pairs adds/deletes an amino acid, which usually is not as bad.
 - scrambles entire polypeptide sequence downstream
 - Insertions/deletions can result in gain/loss of hundreds to thousands of base pairs.
 - often result in complete loss of gene function
 - may arise from errors during genetic recombination
 - Large insertions may be due to transposable elements.

11.4 Mutagenesis


- Mutagens: chemical, physical, or biological agents that increase mutation rates
- Chemical mutagens and radiation (Table 11.2)
 - nucleotide base analogs: resemble nucleotides but have faulty base-pairing (Figure 11.7)
 - Replication errors occur at higher frequencies due to incorrect base pairing.
 - chemical mutagens that induce chemical modifications
 - Example: Alkylating agents such as nitrosoguanidine introduce changes in replicating or nonreplicating DNA.
 - chemical mutagens that cause frameshift mutations
 - Example: Intercalating agents such as acridines push two base pairs apart, triggering insertions or deletions.

G CATT GAT GGATCGAAA Т ΨΨ GGTCCATGCTA GΤ CA G C $(\)$ G Α A A A Α G GTA GΑ A A G Т A A G А А G G G G GF Т

11.4 Mutagenesis

- Mutagens: chemical, physical, or biological agents that increase mutation rates
- Chemical mutagens and radiation (Figure 11.8)
 - nonionizing radiation (e.g., Ultraviolet [UV])
 - Purines and pyrimidines strongly absorb UV.
 - Pyrimidine dimer (two adjacent Cs or Ts on the same strand become covalently bonded) is primary effect of UV radiation.
 - Killing cells by UV is primarily due to effect on DNA.
 - ionizing radiation (e.g., X-rays, cosmic rays, and gamma rays)
 - more powerful than UV
 - ionize water, forming free radicals such as hydroxyl radical (OH·) that damage macromolecules, leading to double- or single-stranded breaks and rearrangements or large deletions

11.4 Mutagenesis

- DNA repair and the SOS system
 - In *Bacteria*, stalled replication or major DNA damage activates the SOS repair system. (Figure 10.9)
 - initiates many DNA repair processes, some of which are error-free
 - also allows DNA repair to occur without a template and with random incorporation of dNTPs (*translesion synthesis*), resulting in many errors and mutations
 - In Escherichia coli, SOS controls transcription of ~40 genes (regulon). (Figure 11.9)
 - Regulators are LexA (repressor) and RecA (normally for recombination) proteins.

II. Gene Transfer in Bacteria

- 11.5 Genetic Recombination
- 11.6 Transformation
- 11.7 Transduction
- 11.8 Conjugation
- 11.9 The Formation of Hfr Strains and Chromosome Mobilization