Leture 15

Example 5

The two reactions of interest for this example are:

$$\operatorname{Cl}_2(g) + \operatorname{C}_3\operatorname{H}_6(g) \to \operatorname{C}_3\operatorname{H}_5\operatorname{Cl}(g) + \operatorname{HCl}(g)$$
 (a)

$$\operatorname{Cl}_2(g) + \operatorname{C}_3\operatorname{H}_6(g) \to \operatorname{C}_3\operatorname{H}_6\operatorname{Cl}_2(g) \tag{b}$$

 C_3H_6 is propylene (propene) (MW = 42.08)

 $C_{3}H_{5}C1$ is allyl chloride (3-chloropropene) (MW = 76.53)

 $C_{3}H_{6}Cl_{2}$ is propylene chloride (1,2—dichloropropane) (MW = 112.99)

The species recovered after the reaction takes place for some time are listed in Table:

species	Cl ₂	C ₃ H ₆	C ₃ H ₅ Cl	$C_3H_6Cl_2$	HCl
mol	141	651	4.6	24.5	4.6

Based on the product distribution assuming that no allyl chlorides were present in the feed, calculate the following:

- a. How much Cl_2 and C_3H_6 were fed to the reactor in mol?
- b. What was the limiting reactant?
- c. What was the excess reactant?
- d. What was the fraction conversion of C_3H_6 to C_3H_5C1 ?
- e. What was the selectivity of C_3H_5C1 relative to $C_3H_6Cl_2$?

f. What was the yield of C_3H_5C1 expressed in g of C_3H_5C1 to the g of C_3H_6 fed to the reactor?

g. What was the extent of reaction of the first and second reactions?

Solution

A convenient basis is what is given in the product list in Table.

Reaction (a): 1 mol of Cl₂ equivalent to 1 mole of C₃H₇Cl

moles of Cl₂ reacts = 4.6 mol C₃H₇Cl $*\frac{1 \text{ mol Cl2}}{1 \text{ mol C}_3\text{H}_7\text{Cl}} = 4.6 \text{ mol Cl}_2$

Reaction (b): 1 mol of Cl_2 equivalent to 1 mole of $C_3H_6Cl_2$

moles of Cl_2 reacts = 24.5 mol $C_3H_6Cl_2 * \frac{1 \text{ mol } Cl_2}{1 \text{ mol } C_3H_6Cl_2} = 24.5 \text{ mol } Cl_2$

 $Total = 4.6 + 24.5 = 29.1 mol Cl_2 reacts$

 Cl_2 in product = 141.0 mol from Table

(a) Total Cl_2 fed = 141.0 + 29.1 = 170.1 mol Cl_2

Total C_3H_6 fed = 651.0 + 29.1 = 680.1 mol of C_3H_6

(b) and (c) Since both reactions involve the same value of the respective reaction stoichiometric coefficients, both reactions will have the same limiting and excess reactants:

 $\xi^{\text{max}}(\text{based on } C_3H_6) = \frac{-680.1 \text{ mol } C_3H_6}{-1} = 680.1 \text{ mol reacting}$

 ξ^{max} (based on Cl_2) = $\frac{-170.1 \text{ mol } \text{Cl}_2}{-1}$ = 170.1 mol reacting

Thus, C₃H₆ was the excess reactantand Cl₂ the limiting reactant.

(d) The fraction conversion of C_3H_6 to C_3H_5C1 was

$$f = \frac{4.6 \text{ mol } C_3 H_6 \text{ reacted}}{680.1 \text{ mol } C_3 H_6 \text{ fed}} = 0.0067$$

(e) The selectivity was:

 $selectivity = \frac{4.6 \text{ mol } C_3 H_5 Cl}{24.5 \text{ mol } C_3 H_6 Cl_2} = 0.19 \frac{\text{mol } C_3 H_5 Cl}{\text{mol } C_3 H_6 Cl_2}$

(f) The yield was:

$$\text{Yield} = \frac{(76.53)(4.6) \text{ g } \text{C}_3 \text{H}_5 \text{Cl}}{(42.08)(680.1) \text{ g } \text{C}_3 \text{H}_6} = 0.012 \frac{\text{g } \text{C}_3 \text{H}_5 \text{Cl}}{\text{g } \text{C}_3 \text{H}_6}$$

(g) Because $C_3H_5C_{1is}$ produced only by the first reaction, the extent of reaction of the first reaction is:

$$\xi_1 = \frac{n_i - n_{io}}{v_i} = \frac{4.6 - 0}{1} = 4.6$$
 mol reacting

Because $C_3H_6C1_2$ is produced only by the second reaction, the extent of reaction of the second reaction is

$$\xi_2 = \frac{n_i - n_{io}}{v_i} = \frac{24.5 - 0}{1} = 24.5$$
 mol reacting

Problems

1. If 1 kg of benzene (C_6H_6) is oxidized with oxygen, how many kilograms of O_2 are needed to convert all the benzene to CO_2 and H_2O ?

2. Two well-known gas phase reactions take place in the dehydration of ethane:

$$C_2H_6 \rightarrow C_2H_4 + H_2 \tag{a}$$

$$C_2H_6 + H_2 \rightarrow 2 CH_4 \tag{b}$$

Given the product distribution measured in the gas phase reaction of C_2H_6 as follows: C_2H_6 27%, C_2H_4 33%, H_2 13%, and CH_4 27%.

a. What species was the limiting reactant?

- b. What species was the excess reactant?
- c. What was the conversion of C_2H_6 to CH_4 ?
- d. What was the degree of completion of the reaction?
- e. What was the selectivity of C_2H_4 relative to CH_4 ?

f. What was the yield of C_2H_4 expressed in kg mol of C_2H_4 produced per kg mol of C_2H_6 ?

g. What was the extent of reaction of C_2H_6 ?