Leture 15

Example 5

The two reactions of interest for this example are:

$$
\begin{align*}
& \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \tag{a}\\
& \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}(\mathrm{~g}) \tag{b}
\end{align*}
$$

$\mathrm{C}_{3} \mathrm{H}_{6}$ is propylene (propene) $(\mathrm{MW}=42.08)$
$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$ is allyl chloride (3-chloropropene) $(\mathrm{MW}=76.53)$
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$ is propylene chloride $(1,2-$ dichloropropane $)(\mathrm{MW}=112.99)$

The species recovered after the reaction takes place for some time are listed in Table:

species	$\mathbf{C l}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{6}}$	$\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{5}} \mathbf{C l}$	$\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{6}} \mathbf{C l}_{\mathbf{2}}$	$\mathbf{H C l}$
mol	141	651	4.6	24.5	4.6

Based on the product distribution assuming that no allyl chlorides were present in the feed, calculate the following:
a. How much Cl_{2} and $\mathrm{C}_{3} \mathrm{H}_{6}$ were fed to the reactor in mol?
b. What was the limiting reactant?
c. What was the excess reactant?
d. What was the fraction conversion of $\mathrm{C}_{3} \mathrm{H}_{6}$ to $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$?
e. What was the selectivity of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$ relative to $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$?
f. What was the yield of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$ expressed in g of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$ to the g of $\mathrm{C}_{3} \mathrm{H}_{6}$ fed to the reactor?
g. What was the extent of reaction of the first and second reactions?

Solution

A convenient basis is what is given in the product list in Table.
Reaction (a): 1 mol of Cl_{2} equivalent to 1 mole of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl}$ moles of Cl_{2} reacts $=4.6 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Cl} * \frac{1 \mathrm{~mol} \mathrm{cl2}}{1 \mathrm{~mol} \mathrm{Cl}_{3} \mathrm{H}_{7} \mathrm{Cl}}=4.6 \mathrm{~mol} \mathrm{Cl}_{2}$

Reaction (b): 1 mol of Cl_{2} equivalent to 1 mole of $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$
moles of Cl_{2} reacts $=24.5 \mathrm{~mol} \mathrm{C} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2} * \frac{1 \mathrm{~mol} \mathrm{Cl2}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}}=24.5 \mathrm{~mol} \mathrm{Cl} \mathrm{m}_{2}$
Total $=4.6+24.5=29.1 \mathrm{~mol} \mathrm{Cl}_{2}$ reacts
Cl_{2} in product $=141.0 \mathrm{~mol}$ from Table
(a) Total Cl_{2} fed $=141.0+29.1=170.1 \mathrm{~mol} \mathrm{Cl}_{2}$

Total $\mathrm{C}_{3} \mathrm{H}_{6}$ fed $=651.0+29.1=680.1 \mathrm{~mol}$ of $\mathrm{C}_{3} \mathrm{H}_{6}$
(b) and (c) Since both reactions involve the same value of the respective reaction stoichiometric coefficients, both reactions will have the same limiting and excess reactants:
$\xi^{\text {max }}\left(\right.$ based on $\left.\mathrm{C}_{3} \mathrm{H}_{6}\right)=\frac{-680.1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}}{-1}=680.1 \mathrm{~mol}$ reacting
$\xi^{\text {max }}\left(\right.$ based on $\left.\mathrm{Cl}_{2}\right)=\frac{-170.1 \mathrm{~mol} \mathrm{Cl}_{2}}{-1}=170.1 \mathrm{~mol}$ reacting

Thus, $\mathrm{C}_{3} \mathrm{H}_{6}$ was the excess reactantand Cl_{2} the limiting reactant.
(d) The fraction conversion of $\mathrm{C}_{3} \mathrm{H}_{6}$ to $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C} 1$ was
$\mathrm{f}=\frac{4.6 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6} \text { reacted }}{680.1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6} \text { fed }}=0.0067$
(e) The selectivity was:
selectivity $=\frac{4.6 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}}{24.5 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}}=0.19 \frac{\mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}}{\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}}$
(f) The yield was:

Yield $=\frac{(76.53)(4.6) \mathrm{g} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}}{(42.08)(680.1) \mathrm{g} \mathrm{C}_{3} \mathrm{H}_{6}}=0.012 \frac{\mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{Cl}}{\mathrm{g} \mathrm{C}_{3} \mathrm{H}_{6}}$
(g) Because $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{C}$ lis produced only by the first reaction, the extent of reactionof the first reaction is:
$\xi_{1}=\frac{n_{i}-n_{\text {io }}}{v_{i}}=\frac{4.6-0}{1}=4.6 \mathrm{~mol}$ reacting

Because $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2}$ is produced only by the second reaction, the extent of reaction of the second reaction is
$\xi_{2}=\frac{n_{i}-n_{\text {io }}}{v_{\mathrm{i}}}=\frac{24.5-0}{1}=24.5 \mathrm{~mol}$ reacting

Problems

1. If 1 kg of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is oxidized with oxygen, how many kilograms of O_{2} are needed to convert all the benzene to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$?
2. Two well-known gas phase reactions take place in the dehydration of ethane:

$$
\begin{align*}
\mathrm{C}_{2} \mathrm{H}_{6} & \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \tag{a}\\
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} & \rightarrow 2 \mathrm{CH}_{4} \tag{b}
\end{align*}
$$

Given the product distribution measured in the gas phase reaction of $\mathrm{C}_{2} \mathrm{H}_{6}$ as follows: $\mathrm{C}_{2} \mathrm{H}_{6} 27 \%, \mathrm{C}_{2} \mathrm{H}_{4} 33 \%, \mathrm{H}_{2} 13 \%$, and $\mathrm{CH}_{4} 27 \%$.
a. What species was the limiting reactant?
b. What species was the excess reactant?
c. What was the conversion of $\mathrm{C}_{2} \mathrm{H}_{6}$ to CH_{4} ?
d. What was the degree of completion of the reaction?
e. What was the selectivity of $\mathrm{C}_{2} \mathrm{H}_{4}$ relative to CH_{4} ?
f. What was the yield of $\mathrm{C}_{2} \mathrm{H}_{4}$ expressed in kg mol of $\mathrm{C}_{2} \mathrm{H}_{4}$ produced per kg mol of $\mathrm{C}_{2} \mathrm{H}_{6}$?
g. What was the extent of reaction of $\mathrm{C}_{2} \mathrm{H}_{6}$?

