
6-Intro to Arduino

Intro to Arduino

Introduction: Intro to Arduino

An Arduino is an open-source microcontroller development
board. In plain English, you can use the Arduino to read sensors
and control things like motors and lights. This allows you to
upload programs to this board which can then interact with things
in the real world. With this, you can make devices which respond
and react to the world at large.

For instance, you can read a humidity sensor connected to a
potted plant and turn on an automatic watering system if it gets
too dry. Or, you can make a stand-alone chat server which is
plugged into your internet router. Or, you can have it tweet every
time your cat passes through a pet door. Or, you can have it start
a pot of coffee when your alarm goes off in the morning.

Basically, if there is something that is in any way controlled by

https://cdn.instructables.com/F2K/5L77/H05NHB4C/F2K5L77H05NHB4C.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

electricity, the Arduino can interface with it in some manner. And
even if it is not controlled by electricity, you can probably still use
things which are (like motors and electromagnets), to interface
with it.

The possibilities of the Arduino are almost limitless. As such,
there is no way that one single tutorial can cover everything you
might ever need to know. That said, I've done my best to give a
basic overview of the fundamental skills and knowledge that you
need to get your Arduino up and running. If nothing more, this
should function as a springboard into further experimentation
and learning.

Step 1: Different Types of Arduinos

https://cdn.instructables.com/FYS/03SJ/H0OJ1LNG/FYS03SJH0OJ1LNG.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

3 More Images

There are a number of different types of Arduinos to choose
from. This is a brief overview of some of the more common types
of Arduino boards you may encounter. For a full listing of
currently support Arduino boards, check out the Arduino
hardware page.

Arduino Uno

The most common version of Arduino is the Arduino Uno. This
board is what most people are talking about when they refer to

http://www.arduino.cc/en/Main/hardware
http://www.arduino.cc/en/Main/hardware
http://amzn.to/2BFo5ms
https://cdn.instructables.com/F2K/5L77/H05NHB4C/F2K5L77H05NHB4C.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds
https://cdn.instructables.com/FXR/57Y8/H05NHB4J/FXR57Y8H05NHB4J.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

an Arduino. In the next step, there is a more complete rundown
of its features.

Arduino NG, Diecimila, and the Duemilanove (Legacy
Versions)

Legacy versions of the Arduino Uno product line consist of the
NG, Diecimila, and the Duemilanove. The important thing to note
about legacy boards is that they lack particular feature of the
Arduino Uno. Some key differences:

 The Diecimila and NG use an ATMEGA168 chips (as opposed to

the more powerful ATMEGA328),

 Both the Diecimila and NG have a jumper next to the USB port

and require manual selection of either USB or battery power.

 The Arduino NG requires that you hold the rest button on the

board for a few seconds prior to uploading a program.

Arduino Mega 2560

The Arduino Mega 2560 is the second most commonly
encountered version of the Arduino family. The Arduino Mega is
like the Arduino Uno's beefier older brother. It boasts 256 KB of
memory (8 times more than the Uno). It also had 54 input and
output pins, 16 of which are analog pins, and 14 of which can do
PWM. However, all of the added functionality comes at the cost
of a slightly larger circuit board. It may make your project more
powerful, but it will also make your project larger. Check out the
official Arduino Mega 2560 page for more details.

Arduino Mega ADK

This specialized version of the Arduino is basically an Arduino
Mega that has been specifically designed for interfacing with
Android smartphones. This too is now a legacy version.

http://amzn.to/2DO4vGu
http://arduino.cc/en/Main/ArduinoBoardMega2560

Arduino Yun

The Arduino Yun uses a ATMega32U4 chip instead of the
ATmega328. However, what really sets it apart is the addition of
the Atheros AR9331 microprocessor. This extra chip allows this
board to run Linux in addition to the normal Arduino operating
system. If all of that were not enough, it also has onboard wifi
capability. In other words, you can program the board to do stuff
like you would with any other Arduino, but you can also access
the Linux side of the board to connect to the internet via wifi. The
Arduino-side and Linux-side can then easily communicate back
and forth with each other. This makes this board extremely
powerful and versatile. I'm barely scratching the surface of what
you can do with this, but to learn more, check out the
official Arduino Yun page.

Arduino Nano

If you want to go smaller than the standard Arduino board,
the Arduino Nano is for you! Based on a surface mount
ATmega328 chip, this version of the Arduino has been shrunk
down to a small footprint capable of fitting into tight spaces. It
can also be inserted directly into a breadboard, making it easy to
prototype with.

Arduino LilyPad

The LilyPad was designed for wearable and e-textile
applications. It is intended to be sewn to fabric and connected to
other sewable components using conductive thread. This board
requires the use of a special FTDI-USB TTL serial programming
cable. For more information, the Arduino LilyPad page is a
decent starting point.

Add TipAsk QuestionComment

http://amzn.to/2BFE2Jo
https://www.arduino.cc/en/Guide/ArduinoYun
http://amzn.to/2nskkvO
http://amzn.to/2EplJLJ
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm
http://arduino.cc/en/Guide/ArduinoLilyPad

Step 2: Arduino Uno Features

Some people think of the entire Arduino board as a
microcontroller, but this is inaccurate. The Arduino board actually
is a specially designed circuit board for programming and
prototyping with Atmel microcontrollers.

The nice thing about the Arduino board is that it is relatively
cheap, plugs straight into a computer's USB port, and it is dead-
simple to setup and use (compared to other development
boards).

Some of the key features of the Arduino Uno include:

 An open source design. The advantage of it being open source

is that it has a large community of people using and

troubleshooting it. This makes it easy to find someone to help

you debug your projects.

http://arduino.cc/forum/
https://cdn.instructables.com/FTA/8EB8/H142A66M/FTA8EB8H142A66M.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

 An easy USB interface . The chip on the board plugs straight into

your USB port and registers on your computer as a virtual serial

port. This allows you to interface with it as through it were a

serial device. The benefit of this setup is that serial

communication is an extremely easy (and time-tested) protocol,

and USB makes connecting it to modern computers really

convenient.

 Very convenient power management and built-in voltage

regulation. You can connect an external power source of up to

12v and it will regulate it to both 5v and 3.3v. It also can be

powered directly off of a USB port without any external power.

 An easy-to-find, and dirt cheap, microcontroller "brain." The

ATmega328 chip retails for about $2.88 on Digikey. It has

countless number of nice hardware features like timers, PWM

pins, external and internal interrupts, and multiple sleep modes.

Check out the official datasheet for more details.

 A 16mhz clock. This makes it not the speediest microcontroller

around, but fast enough for most applications.

 32 KB of flash memory for storing your code.

 13 digital pins and 6 analog pins. These pins allow you to

connect external hardware to your Arduino. These pins are key

for extending the computing capability of the Arduino into the real

http://www.atmel.com/Images/8271s.pdf

world. Simply plug your devices and sensors into the sockets

that correspond to each of these pins and you are good to go.

 An ICSP connector for bypassing the USB port and interfacing

the Arduino directly as a serial device. This port is necessary

to re-bootload your chip if it corrupts and can no longer talk to

your computer.

 An on-board LED attached to digital pin 13 for fast an easy

debugging of code.

 And last, but not least, a button to reset the program on the chip.

For a complete rundown of all the Arduino Uno has to offer, be
sure to check out the official Arduino page.

Add TipAsk QuestionComment

https://www.instructables.com/id/Bootload-an-Arduino-with-a-ZIF-Socket/
http://arduino.cc/en/Main/ArduinoBoardUno

Step 3: Arduino IDE

Before you can start doing anything with the Arduino, you need
to download and install the Arduino IDE (integrated development
environment). From this point on we will be referring to the
Arduino IDE as the Arduino Programmer.

The Arduino Programmer is based on the Processing IDE and
uses a variation of the C and C++ programming languages.

http://www.arduino.cc/en/Main/software
http://processing.org/
https://cdn.instructables.com/FHS/OMOZ/H0A2H36S/FHSOMOZH0A2H36S.LARGE.jpg?auto=webp&fit=bounds

Step 4: Plug It In

Connect the Arduino to your computer's USB port.

Please note that although the Arduino plugs into your computer,
it is not a true USB device. The board has a special chip that
allows it to show up on your computer as a virtual serial port
when it is plugged into a USB port. This is why it is important to
plug the board in. When the board is not plugged in, the virtual
serial port that the Arduino operates upon will not be present
(since all of the information about it lives on the Arduino board).

It is also good to know that every single Arduino has a unique
virtual serial port address. This means that every time you plug
in a different Arduino board into your computer, you will need to
reconfigure the serial port that is in use.

The Arduino Uno requires a male USB A to male USB B cable.

http://amzn.to/2Gxtobi
https://cdn.instructables.com/FUZ/UHSQ/H0A001RZ/FUZUHSQH0A001RZ.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

Step 5: Settings

https://cdn.instructables.com/FSL/I0F3/H142PA5I/FSLI0F3H142PA5I.LARGE.jpg?auto=webp&width=1024&fit=bounds

Before you can start doing anything in the Arduino programmer,
you must set the board-type and serial port.

To set the board, go to the following:

Tools --> Boards

Select the version of board that you are using. Since I have an

Arduino Uno plugged in, I obviously selected "Arduino Uno."

To set the serial port, go to the following:

Tools --> Serial Port

https://cdn.instructables.com/F6F/MRQJ/H1426LR2/F6FMRQJH1426LR2.LARGE.jpg?auto=webp&width=1024&fit=bounds

Select the serial port that looks like:

/dev/tty.usbmodem [random numbers]

Step 6: Run a Sketch

https://cdn.instructables.com/FJU/YHUA/H0C6MHGC/FJUYHUAH0C6MHGC.LARGE.jpg?auto=webp&fit=bounds
https://cdn.instructables.com/FB2/DHZX/H0A00DUB/FB2DHZXH0A00DUB.LARGE.jpg?auto=webp&fit=bounds

Arduino programs are called sketches. The Arduino programmer
comes with a ton of example sketches preloaded. This is great
because even if you have never programmed anything in your
life, you can load one of these sketches and get the Arduino to
do something.

To get the LED tied to digital pin 13 to blink on and off, let's load
the blink example.

The blink example can be found here:

Files --> Examples --> Basics --> Blink

The blink example basically sets pin D13 as an output and then

blinks the test LED on the Arduino board on and off every

second.

Once the blink example is open, it can be installed onto the

ATMEGA328 chip by pressing the upload button, which looks

like an arrow pointing to the right.

https://cdn.instructables.com/FS6/I5IK/H0C6MHGG/FS6I5IKH0C6MHGG.LARGE.jpg?auto=webp&fit=bounds

Notice that the surface mount status LED connected to pin 13 on

the Arduino will start to blink. You can change the rate of the

blinking by changing the length of the delay and pressing the

upload button again.

Add TipAsk QuestionComment

Step 7: Serial Monitor

https://cdn.instructables.com/F7G/OG5U/H142Z8QK/F7GOG5UH142Z8QK.LARGE.jpg?auto=webp&width=1024&fit=bounds

The serial monitor allows your computer to connect serially with
the Arduino. This is important because it takes data that your
Arduino is receiving from sensors and other devices and displays
it in real-time on your computer. Having this ability is invaluable
to debug your code and understand what number values the chip
is actually receiving.

For instance, connect center sweep (middle pin) of a
potentiometer to A0, and the outer pins, respectively, to 5v and
ground. Next upload the sketch shown below:

File --> Examples --> 1.Basics --> AnalogReadSerial

Click the button to engage the serial monitor which looks like a

magnifying glass. You can now see the numbers being read by

https://cdn.instructables.com/FHM/9QUH/H143LPL3/FHM9QUHH143LPL3.LARGE.jpg?auto=webp&width=1024&fit=bounds

the analog pin in the serial monitor. When you turn the knob the

numbers will increase and decrease.

The numbers will be between the range of 0 and 1023. The

reason for this is that the analog pin is converting a voltage

between 0 and 5V to a discreet number.

Step 8: Digital In

The Arduino has two different types of input pins, those being
analog and digital.

To begin with, lets look at the digital input pins.

Digital input pins only have two possible states, which are on or
off. These two on and off states are also referred to as:

 HIGH or LOW

https://cdn.instructables.com/FT9/0P7B/H142P82N/FT90P7BH142P82N.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

 1 or 0

 5V or 0V.

This input is commonly used to sense the presence of voltage
when a switch is opened or closed.

Digital inputs can also be used as the basis for countless digital
communication protocols. By creating a 5V (HIGH) pulse or 0V
(LOW) pulse, you can create a binary signal, the basis of all
computing. This is useful for talking to digital sensors like a PING
ultrasonic sensor, or communicating with other devices.

For a simple example of a digital input in use, connect a switch
from digital pin 2 to 5V, a 10K resistor** from digital pin 2 to
ground, and run the following code:

File --> Examples --> 2.Digital --> Button

**The 10K resistor is called a pull-down resistor because it

connects the digital pin to ground when the switch is not

pressed. When the switch is pressed, the electrical connections

in the switch has less resistance than the resistor, and the

electricity no longer connects to ground. Instead, electricity flows

between 5V and the digital pin. This is because electricity always

chooses the path of least resistance. To learn more about this,

visit the Digital Pins page.

Add TipAsk QuestionComment

http://arduino.cc/en/Tutorial/DigitalPins

Step 9: Analog In

Aside from the digital input pins, the Arduino also boasts a
number of analog input pins.

Analog input pins take an analog signal and perform a 10-bit
analog-to-digital (ADC) conversion to turn it into a number
between 0 and 1023 (4.9mV steps).

This type of input is good for reading resistive sensors. These
are basically sensors which provide resistance to the circuit.
They are also good for reading a varying voltage signal between
0 and 5V. This is useful when interfacing with various types of
analog circuitry.

If you followed the example in Step 7 for engaging the serial
monitor, you have already tried using an analog input pin.

Add TipAsk QuestionComment

https://cdn.instructables.com/FID/B5US/H1426JJG/FIDB5USH1426JJG.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

Step 10: Digital Out

A digital out pin can be set to be HIGH (5v) or LOW (0v). This
allows you to turn things on and off.

Aside from turning things on and off (and making LEDs blink),
this form of output is convenient for a number of applications.

Most notably, it allows you to communicate digitally. By turning
the pin on and off rapidly, you are creating binary states (0 and
1), which is recognized by countless other electronic devices as
a binary signal. By using this method, you can communicate
using a number of different protocols.

Digital communication is an advanced topic, but to get a general
idea of what can be done, check out the Interfacing With
Hardware page.

If you followed the example in Step 6 for getting an LED to blink,
you have already tried using a digital output pin.

Add TipAsk QuestionComment

http://arduino.cc/playground/Main/InterfacingWithHardware
http://arduino.cc/playground/Main/InterfacingWithHardware
https://cdn.instructables.com/FGG/JIJL/H1426JNH/FGGJIJLH1426JNH.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

Step 11: Analog Out

As mentioned earlier, the Arduino has a number of built in
special functions. One of these special functions is pulse width
modulation, which is the way an Arduino is able to create an
analog-like output.

Pulse width modulation - or PWM for short - works by rapidly
turning the PWM pin high (5V) and low (0V) to simulate an
analog signal. For instance, if you were to blink an LED on and
off rapidly enough (about five milliseconds each), it would seem
to average the brightness and only appear to be receiving half
the power. Alternately, if it were to blink on for 1 millisecond and
then blink off for 9 millisecond, the LED would appear to be 1/10
as bright and only be receiving 1/10 the voltage.

PWM is key for a number of applications including making
sound, controlling the brightness of lights, and controlling the
speed of motors.

.

To try out PWM yourself, connect an LED and 220 ohm resistor
to digital pin 9, in series to ground. Run the following example
code:

File --> Examples --> 3.Analog --> Fading

https://cdn.instructables.com/FC1/HJ0M/H142Z50T/FC1HJ0MH142Z50T.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

Add TipAsk QuestionComment

Step 12: Write Your Own Code

To write your own code, you will need to learn some basic
programming language syntax. In other words, you have to learn
how to properly form the code for the programmer to understand
it. You can think of this kind of like understanding grammar and
punctuation. You can write an entire book without proper
grammar and punctuation, but no one will be abler to understand
it, even if it is in English.

Some important things to keep in mind when writing your own
code:

 An Arduino program is called a sketch.

 All code in an Arduino sketch is processed from top to bottom.

 Arduino sketches are typically broken into five parts.

https://cdn.instructables.com/FW3/MX1A/H142A629/FW3MX1AH142A629.LARGE.jpg?auto=webp&width=1024&fit=bounds

1. The sketch usually starts with a header that explains what

the sketch is doing, and who wrote it.

2. Next, it usually defines global variables. Often, this is where

constant names are given to the different Arduino pins.

3. After the initial variables are set, the Arduino begins the

setup routine. In the setup function, we set initial conditions

of variables when necessary, and run any preliminary code

that we only want to run once. This is where serial

communication is initiated, which is required for running the

serial monitor.

4. From the setup function, we go to the loop routine. This is

the main routine of the sketch. This is not only where your

main code goes, but it will be executed over and over, so

long as the sketch continues to run.

5. Below the loop routine, there is often other functions listed.

These functions are user-defined and only activated when

called in the setup and loop routine. When these functions

are called, the Arduino processes all of the code in the

function from top to bottom and then goes back to the next

line in the sketch where it left off when the function was

called. Functions are good because they allow you to run

standard routines - over and over - without having to write

the same lines of code over and over. You can simply call

upon a function multiple times, and this will free up memory

on the chip because the function routine is only written once.

It also makes code easier to read. To learn how to form your

own functions, check out this page.

 All of that said, the only two parts of the sketch which are

mandatory are the Setup and Loop routines.

 Code must be written in the Arduino Language, which is roughly

based on C.

 Almost all statements written in the Arduino language must end

with a ;

 Conditionals (such as if statements and for loops) do not need a

;

 Conditionals have their own rules and can be found under

"Control Structures" on the Arduino Language page

 Variables are storage compartments for numbers. You can pass

values into and out of variables. Variables must be defined

(stated in the code) before they can be used and need to have a

data type associated with it. To learn some of the basic data

types, review the Language Page.

Okay! So let us say we want to write code that reads a photocell
connected to pin A0, and use the reading we get from the

http://arduino.cc/en/Reference/FunctionDeclaration
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/If
http://arduino.cc/en/Reference/For
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Reference/HomePage

photocell to control the brightness of an LED connected to pin
D9.

First, we want to open the BareMinimum sketch, which can be
found at:

File --> Examples --> 1.Basic --> BareMinimum

The BareMinimum Sketch should look like this:

<pre>void setup() {

 // put your setup code here, to run once:

}

void loop() {

 // put your main code here, to run repeatedly:

}

Next, lets put a header on the code, so other people know about

what we are making, why, and under what terms:

<pre>/*

LED Dimmer

by Genius Arduino Programmer

2012

Controls the brightness of an LED on pin D9

based on the reading of a photocell on pin A0

This code is in the Public Domain

*/

void setup() {

 // put your setup code here, to run once:

}

void loop() {

 // put your main code here, to run repeatedly:

}

Once that is all squared away, let us define the pin names, and

establish variables:

<pre>/*

LED Dimmer

by Genius Arduino Programmer

2012

Controls the brightness of an LED on pin D9

based on the reading of a photocell on pin A0

This code is in the Public Domain

*/

// name analog pin 0 a constant name

const int analogInPin = A0;

// name digital pin 9 a constant name

const int LEDPin = 9;

//variable for reading a photocell

int photocell;

void setup() {

 // put your setup code here, to run once:

}

void loop() {

 // put your main code here, to run repeatedly:

}

Now that variables and pin names are set, let us write the actual

code:

<pre>/*

LED Dimmer

by Genius Arduino Programmer

2012

Controls the brightness of an LED on pin D9

based on the reading of a photocell on pin A0

This code is in the Public Domain

*/

// name analog pin 0 a constant name

const int analogInPin = A0;

// name digital pin 9 a constant name

const int LEDPin = 9;

//variable for reading a photocell

int photocell;

void setup() {

//nothing here right now

}

void loop() {

 //read the analog in pin and set the reading to the photocell variable

 photocell = analogRead(analogInPin);

 //control the LED pin using the value read by the photocell

 analogWrite(LEDPin, photocell);

 //pause the code for 1/10 second

 //1 second = 1000

 delay(100);

}

If we want to see what numbers the analog pin is actually

reading from the photocell, we will need to use the serial monitor.

Let's activate the serial port and output those numbers:

<pre>/*

LED Dimmer

by Genius Arduino Programmer

2012

Controls the brightness of an LED on pin D9

based on the reading of a photocell on pin A0

This code is in the Public Domain

*/

// name analog pin 0 a constant name

const int analogInPin = A0;

// name digital pin 9 a constant name

const int LEDPin = 9;

//variable for reading a photocell

int photocell;

void setup() {

 Serial.begin(9600);

}

void loop() {

 //read the analog in pin and set the reading to the photocell variable

 photocell = analogRead(analogInPin);

 //print the photocell value into the serial monitor

 Serial.print("Photocell = ");

 Serial.println(photocell);

 //control the LED pin using the value read by the photocell

 analogWrite(LEDPin, photocell);

 //pause the code for 1/10 second

 //1 second = 1000

 delay(100);

}

For more information about formulating code, visit
the Foundations Page. If you need help with the Arduino
Language, then the Language Page is the place for you.

Also, the Example Sketch Page is a great place to start messing
around with code. Don't be afraid to change things and
experiment.

http://arduino.cc/en/Tutorial/Foundations
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/hu/Tutorial/HomePage

Step 13: Shields

Shields are expansion apdapter boards that plug in over top of
the Arduino Uno and gives it special functions.

Since the Arduino is open hardware, anyone who has the
inclination is free to make an Arduino shield for whatever task
they wish to accomplish. On account of this, there are countless
number of Arduino shields out in the wild. You can find an ever-
growing list of Arduino shields in the Arduino playground. Keep
in mind that there will be more shield in existence than you will
find on listed on that page (as always, Google is your friend).

To give you a small sense of the capabilities of Arduino shields,
check out these tutorials on how to use three official Arduino
shields:

 Wireless SD Shield

 Ethernet Shield

 Motor Shield

http://www.arduino.cc/playground/Main/SimilarBoards
https://www.instructables.com/id/Arduino-Wireless-SD-Shield-Tutorial/
https://www.instructables.com/id/Arduino-Ethernet-Shield-Tutorial/
https://www.instructables.com/id/Arduino-Motor-Shield-Tutorial/
https://cdn.instructables.com/FHL/1GFX/H0A0LBNW/FHL1GFXH0A0LBNW.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

Step 14: Building an External Circuit

As your projects get more complex, you will want to build your
own circuits to interfacewith the Arduino. While you won't learn
electronics overnight, the internet is an unbelievable resource for
electronic knowledge and circuit diagrams.

https://cdn.instructables.com/FY7/TGWQ/H0A2836M/FY7TGWQH0A2836M.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

Step 15: Going Beyond

https://cdn.instructables.com/FG8/BV6T/H0A288B0/FG8BV6TH0A288B0.LARGE.jpg?auto=webp&width=1024&height=1024&fit=bounds

