Lecture 6

3. Choosing a Basis

A basis is a reference chosen by you for the calculations you plan to make in any particular problem, and a proper choice of basis frequently makes the problem much easier to solve.

The basis may be a period of time such as hours, or a given mass of material, such as 5 kg of CO_{2}, or some other convenient quantity.

For liquids and solids in which a mass (weight) analysis applies, a convenient basis is often 1 or 100 lb or kg; similarly, 1 or 100 moles is often a good choice for a gas.

Example 16

A liquefied mixture has the following composition: $n-\mathrm{C}_{4} \mathrm{H}_{10} \quad 50 \%$ (MW=58), $n-\mathrm{C}_{5} \mathrm{H}_{12} 30 \% ~(\mathrm{MW}=72)$, and $\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14} 20 \% \quad(\mathrm{MW}=86)$. For this mixture, calculate: (a) mole fraction of each component. (b) Average molecular weight of the mixture.

Solution

Basis : 100 kg

	kg	mass fr.	MW	k mol	mol fr.
$\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$	50	0.5	58	0.86	0.57
$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}$	30	0.3	72	0.42	0.28
$\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{14}$	20	0.2	86	0.23	0.15
	100			1.51	1.00

Average molecular weight $=\frac{\text { total mass }}{\text { total mol }}=\frac{100 \mathrm{~kg}}{1.51 \mathrm{~kg} \mathrm{~mol}}=66.2 \frac{\mathrm{~kg}}{\mathrm{kmol}}$

Example 17

Given that a 50.0 kg test run of gas averages $10.0 \% \mathrm{H}_{2}, 40.0 \% \mathrm{CH}_{4}, 30.0 \%$ CO , and $20.0 \% \mathrm{CO}_{2}$, what is the average molecular weight of the gas?

Solution

Basis: 100 kg mol or lb mol of gas

Component	Percent $=\mathbf{k g}$ mol or $\mathbf{l b} \mathbf{~ m o l}$	Mol wt.	Kg or lb
CO_{2}	20.0	44.0	880
$\mathrm{CO}^{\mathrm{CH}}$	30.0	28.0	840
H_{4}	40.0	16.04	642
Total	10.0	2.02	$\frac{20}{2382}$

Average molecular weight $=\frac{2382 \mathrm{~kg}}{100 \mathrm{~kg} \mathrm{~mol}}=23.8 \mathrm{~kg} / \mathrm{kg} \mathrm{mol}$

4. Temperature

Temperature is a measure of the energy (mostly kinetic) of the molecules in a system. This definition tells us about the amount of energy.

Four types of temperature:
Two based on a relative scale, degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$ and Celsius $\left({ }^{\circ} \mathrm{C}\right)$, and two based on an absolute scale, degree Rankine (${ }^{\circ} \mathrm{R}$)and Kelvin (K).

The relations between ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}, \mathrm{K}$, and ${ }^{\circ} \mathrm{R}$ are:
$\mathrm{T}_{\mathrm{o}}=1.8 \mathrm{~T}_{\mathrm{o} \mathrm{C}}+32$
$\mathrm{T}_{\mathrm{K}}=\mathrm{T}_{\mathrm{C}} \mathrm{C}+273$
$\mathrm{T}_{\mathrm{o}_{\mathrm{R}}}=\mathrm{T}_{\mathrm{o}_{\mathrm{F}}}+460$

Temperature Conversion

$\Delta^{\circ} \mathrm{C}=\Delta \mathrm{K}$ and
$\Delta^{\mathrm{o}} \mathrm{F}=\Delta^{\mathrm{o}} \mathrm{R}$

Also, the $\Delta^{\circ} \mathrm{C}$ is larger than the $\Delta^{\circ} \mathrm{F}$
$\frac{\Delta^{\circ} \mathrm{C}}{\Delta^{\circ} \mathrm{F}}=1.8$
$\frac{\Delta \mathrm{K}}{\Delta^{\circ} \mathrm{R}}=1.8$

Example 18

Convert $100^{\circ} \mathrm{C}$ to (a) K , (b) ${ }^{\circ} \mathrm{F}$, and (c) ${ }^{\circ} \mathrm{R}$.

Solution
(a) $(100+273)^{\circ} \mathrm{C} \frac{1 \Delta \mathrm{~K}}{1 \Delta{ }^{\circ} \mathrm{C}}=373 \mathrm{~K}$
or with suppression of the Δ symbol,

$$
(100+273)^{\circ} \mathrm{C} \frac{1 \mathrm{~K}}{1^{\circ} \mathrm{C}}=373 \mathrm{~K}
$$

(b) $\left(100^{\circ} \mathrm{C}\right) \frac{1.8 \Delta^{\circ} \mathrm{F}}{1 \Delta^{\circ} \mathrm{C}}+32^{\circ} \mathrm{F}=212^{\circ} \mathrm{F}$
(c) $(212+460)^{\circ} \mathrm{F} \frac{1 \Delta^{\circ} \mathrm{R}}{1 \Delta^{\circ} \mathrm{F}}=672^{\circ} \mathrm{R}$

Example 19

The heat capacity of sulfuric acid has the units $\mathrm{J} /(\mathrm{g} \mathrm{mol})\left({ }^{\circ} \mathrm{C}\right)$, and is given by the relation

Heat capacity $=139.1+1.56 * 10^{-1} \mathrm{~T}$
where T is expressed in ${ }^{\circ} \mathrm{C}$. Modify the formula so that the resulting expression has the associated units of $\mathrm{Btu} /(\mathrm{lbmol})\left({ }^{\circ} \mathrm{R}\right)$ and T is in ${ }^{\circ} \mathrm{R}$.

Solution
step 1:
$\mathrm{T}_{{ }^{-} \mathrm{C}}=\frac{\left[\mathrm{T}_{\mathrm{o}_{\mathrm{R}}}-460-32\right]}{1.8}$

Step 2:
heat capacity $=\left\{139.1+1.56 * 10^{-1}\left(\frac{\left[\mathrm{~T}_{\mathrm{o}_{\mathrm{R}}}-460-32\right]}{1.8}\right)\right\} *$
$\left.\frac{1 \mathrm{~J}}{\mathrm{~g} \mathrm{~mol}\left({ }^{\circ} C\right)}\left|\frac{1 \mathrm{Btu}}{1055 \mathrm{~J}}\right| \frac{454 \mathrm{~g} \mathrm{~mol}}{1 \mathrm{lb} \mathrm{mol}} \right\rvert\, \frac{1^{\circ} \mathrm{C}}{1.8^{\mathrm{o} R} R}$
$=23.06+2.07 * 10^{-2} T_{o_{R}}$
Note the suppression of the Δ symbol in the conversion between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{R}$.

