Lecture 6

3. Choosing a Basis

A basis is a reference chosen by you for the calculations you plan to make in any particular problem, and a proper choice of basis frequently makes the problem much easier to solve.

The basis may be a period of time such as hours, or a given mass of material, such as 5 kg of CO₂, or some other convenient quantity.

For liquids and solids in which a mass (weight) analysis applies, a convenient basis is often 1 or 100 lb or kg; similarly, 1 or 100 moles is often a good choice for a gas.

Example 16

A liquefied mixture has the following composition: $n-C_4H_{10}$ 50% (MW=58), $n-C_5H_{12}$ 30% (MW=72), and $n-C_6H_{14}$ 20% (MW=86). For this mixture, calculate: (a) mole fraction of each component. (b) Average molecular weight of the mixture.

Solution

	kg	mass fr.	MW	k mol	mol fr.
$n-C_4H_{10}$	50	0.5	58	0.86	0.57
$n-C_5H_{12}$	30	0.3	72	0.42	0.28
$n-C_{6}H_{14}$	20	0.2	86	0.23	0.15
	100			1.51	1.00

Basis : 100 kg

Average molecular weight = $\frac{total mass}{total mol} = \frac{100 kg}{1.51 kg mol} = 66.2 \frac{kg}{k mol}$

Example 17

Given that a 50.0 kg test run of gas averages 10.0% H₂, 40.0% CH₄, 30.0% CO, and 20.0% CO₂, what is the average molecular weight of the gas?

Solution

Basis: 10	0 kg n	nol or	lb n	nol of	f gas
-----------	--------	--------	------	--------	-------

Component	Percent = kg mol or lb mol	Mol wt.	Kg or ib
CO2	20.0	44.0	880
co	30.0	28.0	840
CH₄	40.0	16.04	642
H ₂	10.0	2.02	20
Total	100.0		2382

Average molecular weight = $\frac{2382 \text{ kg}}{100 \text{ kg mol}}$ = 23.8 kg/kg mol

4. Temperature

Temperature is a measure of the energy (mostly kinetic) of the molecules in a system. This definition tells us about the amount of energy.

Four types of temperature:

Two based on a relative scale, degrees Fahrenheit (°F) and Celsius (°C), and two based on an absolute scale, degree Rankine (°R)and Kelvin (K).

The relations between °C, °F, K,and °R are:

$$\mathrm{T}_{^{\mathrm{O}}\mathrm{F}}=1.8~\mathrm{T}_{^{\mathrm{O}}\mathrm{C}}+32$$

 $T_K = T_{^{\underline{o}}C} + 273$

 $T_{^{\varrho}R} = T_{^{\varrho}F} + 460$

Temperature Conversion

$$\Delta^{o}C = \Delta K$$
 and
 $\Delta^{o}F = \Delta^{o}R$

Also, the $\Delta^{\circ}C$ is larger than the $\Delta^{\circ}F$

$$\frac{\Delta^{\circ}C}{\Delta^{\circ}F} = 1.8$$
$$\frac{\Delta K}{\Delta^{\circ}R} = 1.8$$

Example 18

Convert 100°C to (a) K, (b) °F, and (c) °R.

Solution

(a)
$$(100 + 273)^{\circ}C \frac{1 \Delta K}{1 \Delta^{\circ}C} = 373 \text{ K}$$

or with suppression of the Δ symbol,

$$(100 + 273)^{\circ}C \frac{1 \text{ K}}{1^{\circ}C} = 373 \text{ K}$$

- --

(b)
$$(100^{\circ}\text{C})\frac{1.8 \ \Delta^{\circ}\text{F}}{1 \ \Delta^{\circ}\text{C}} + 32^{\circ}\text{F} = 212^{\circ}\text{F}$$

(c) $(212 + 460)^{\circ}\text{F}\frac{1 \ \Delta^{\circ}\text{R}}{1 \ \Delta^{\circ}\text{F}} = 672^{\circ}\text{R}$

Example 19

The heat capacity of sulfuric acid has the units $J/(g \text{ mol})(^{\circ}C)$, and is given by the relation

Heat capacity = $139.1 + 1.56 * 10^{-1}$ T

where T is expressed in °C. Modify the formula so that the resulting expression has the associated units of Btu/(lb mol) (°R) and T is in °R.

Solution

step 1:

$$T_{{}^{\underline{o}}\underline{C}} = \frac{[T_{{}^{\underline{o}}\underline{R}} - 460 - 32]}{1.8}$$

Step 2:

heat capacity =
$$\left\{ 139.1 + 1.56 * 10^{-1} \left(\frac{[T_{\circ_R} - 460 - 32]}{1.8} \right) \right\} *$$

 $\frac{1J}{g \ mol \ (^{\circ}C)} \left| \frac{1 \ Btu}{1055 \ J} \right| \frac{454 \ g \ mol}{1 \ lb \ mol} \left| \frac{1^{\circ}C}{1.8^{\circ}R} \right|$
= 23.06 + 2.07 * $10^{-2}T_{\circ_R}$

Note the suppression of the Δ symbol in the conversion between °C and °R.