## Lecture 4

## Moles, Density and Concentration

## The mole

The atomic weight of an element is the mass of an atom based on the scale that assigns a mass of exactly 12 to the carbon isotope ${ }^{12} \mathrm{C}$.

A compound is composed of more than one atom, and the molecular weight of the compound is nothing more than the sum of the weights of atoms of which it is composed.

In the SI system, a mole is composed of $6.022 \times 10^{23}$ (Avogadro's number) molecules. To convert the number of moles to mass and the mass to moles, we make use of the molecular weight- the mass per mole:

$$
\text { Molecular Weight }=\frac{\text { Mass }}{\text { Mole }}
$$

Thus, the calculations you carry out are:
The $\mathrm{g} \mathrm{mol}=\frac{\text { mass in } \mathrm{g}}{\text { molecular weight }}$
The $\mathrm{lb} \mathrm{mol}=\frac{\text { mass in lb }}{\text { molecular weight }}$

## Example 9

How many of each of the following are contained in $100 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}(\mathrm{M}=$ 44.01)?

1. $\mathrm{mol} \mathrm{CO}_{2}$

$$
\begin{array}{l|l|}
100.0 \mathrm{~g} \mathrm{CO}_{2} & 1 \mathrm{~mol} \mathrm{CO}_{2} \\
\hline & 44.01 \mathrm{~g} \mathrm{CO}_{2}
\end{array}=\begin{aligned}
& 2.273 \mathrm{~mol} \mathrm{CO}_{2} \\
& \hline
\end{aligned}
$$

2. lb moles $\mathrm{CO}_{2}$

3. mol C

$$
\begin{array}{l|l}
2.273 \mathrm{~mol} \mathrm{CO}_{2} & 1 \mathrm{~mol} \mathrm{C} \\
& 1 \mathrm{~mol} \mathrm{CO}_{2}
\end{array}=\begin{aligned}
& 2.273 \mathrm{~mol} \mathrm{C} \\
& \hline
\end{aligned}
$$

4. mol O

$$
\begin{array}{l|l}
2.273 \mathrm{~mol} \mathrm{CO}_{2} & 2 \mathrm{~mol} \mathrm{O} \\
\hline & 1 \mathrm{~mol} \mathrm{CO}_{2}
\end{array}=4.546 \mathrm{~mol} \mathrm{O}
$$

5. $\mathrm{mol} \mathrm{O}_{2}$

$$
\begin{array}{l|l|}
2.273 \mathrm{~mol} \mathrm{CO}_{2} & 1 \mathrm{~mol} \mathrm{O}_{2} \\
\hline & 1 \mathrm{~mol} \mathrm{CO}_{2}
\end{array}=\begin{aligned}
& 2.273 \mathrm{~mol} \mathrm{O}_{2} \\
& \hline
\end{aligned}
$$

6. g O

$$
\begin{array}{l|l|}
\hline 4.546 \mathrm{~mol} \mathrm{O} & 16.0 \mathrm{~g} \mathrm{O} \\
\hline & 1 \mathrm{~mol} \mathrm{O}
\end{array}=\begin{aligned}
& 72.7 \mathrm{~g} \mathrm{O} \\
& \hline
\end{aligned}
$$

7. $\mathrm{g} \mathrm{O}_{2}$

$$
\begin{array}{l|l|}
2.273 \mathrm{~mol} \mathrm{O}_{2} & 32.0 \mathrm{~g} \mathrm{O}_{2} \\
& 1 \mathrm{~mol} \mathrm{O}_{2}
\end{array}=\begin{aligned}
& 72.7 \mathrm{~g} \mathrm{O}_{2} \\
& \hline
\end{aligned}
$$

8. molecules of $\mathrm{CO}_{2}$

$$
\begin{array}{l|c|}
2.273 \mathrm{~mol} \mathrm{CO}_{2} & 6.02 \times 10^{23} \text { molecules } \\
\hline 1 \mathrm{~mol}
\end{array}=\begin{aligned}
& 1.37 \times 10^{24} \text { molecules } \\
& \hline
\end{aligned}
$$

9. kmol of $\mathrm{CO}_{2}$ for $100 \mathrm{~kg} \mathrm{CO}_{2}$

$$
\begin{array}{l|l}
100 \mathrm{~kg} \mathrm{CO}_{2} & 1 \mathrm{kmol} \mathrm{CO}_{2} \\
\hline & 44.0 \mathrm{~kg} \mathrm{CO}_{2}
\end{array}=2.27 \underline{\mathrm{kmol} \mathrm{CO}_{2}}
$$

## Example 10

Calculate the average molecular weight of air, assuming that air is $21 \% \mathrm{O}_{2}$ and $79 \% \mathrm{~N}_{2}$.

## Solution

Because the composition of air is given in mole percent, a basis of 1 g mol is chosen. The MW of the $\mathrm{N}_{2}$ is not actually 28.0 but 28.2 because the value of the MW of the pseudo $79 \% \mathrm{~N}_{2}$ is actually a combination of $78.084 \% \mathrm{~N}_{2}$ and $0.934 \% \mathrm{Ar}$. The masses of the $\mathrm{O}_{2}$ and pseudo $\mathrm{N}_{2}$ are

## Basis: 1 g mol of air

$$
\begin{aligned}
& \text { Mass of } \mathrm{O}_{2}=\frac{1 \mathrm{~g} \mathrm{~mol} \mathrm{air}}{}\left|\frac{0.21 \mathrm{~g} \mathrm{~mol} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{~mol} \mathrm{air}}\right| \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{~g} \mathrm{~mol} \mathrm{O}_{2}}=6.72 \mathrm{~g} \mathrm{O}_{2} \\
& \begin{aligned}
\text { Mass of } \mathrm{N}_{2}=\frac{1 \mathrm{~g} \mathrm{~mol} \mathrm{air}}{}\left|\frac{0.79 \mathrm{~g} \mathrm{~mol}_{2}}{\mathrm{~g} \mathrm{~mol} \mathrm{air}}\right| \frac{28.2 \mathrm{~g} \mathrm{~N}_{2}}{\mathrm{~g} \mathrm{~mol}_{2}} & =22.28 \mathrm{~g} \mathrm{~N}_{2} \\
\text { Total } & =29.0 \mathrm{~g} \text { air }
\end{aligned}
\end{aligned}
$$

Therefore, the total mass of 1 g mol of air is equal to 29.0 g , which is called the average molecular weight of air. (Because we chose 1 g mol of air as the basis, the total mass calculated directly provides the average molecular weight of 29.0.)

## Density

Density is the ratio of mass per unit volume, as for example, $\mathrm{kg} / \mathrm{m}^{3}$ or $\mathrm{lb} / \mathrm{ft}^{3}$. Density has both a numerical value and units. Specific volume is the inverse of density, such as $\mathrm{cm}^{3} / \mathrm{g}$ or $\mathrm{ft}^{3} / \mathrm{lb}$.

Density $(\rho)=\frac{\text { mass }}{\text { volume }}=\frac{\mathrm{m}}{\mathrm{V}}$
Specific volume $(\widehat{V})=\frac{\text { volume }}{\text { mass }}=\frac{\mathrm{V}}{\mathrm{m}}$
For example, given that the density of n-propyl alcohol is $0.804 \mathrm{~g} / \mathrm{cm}^{3}$, what would be the volume of 90 g of the alcohol? The calculation is:
$90 \mathrm{~g} \left\lvert\, \frac{1 \mathrm{~cm}^{3}}{0.804 \mathrm{~g}}=112 \mathrm{~cm}^{3}\right.$

A homogeneous mixture of two or more components, whether solid, liquid, or gaseous, is called a solution.

For some solutions, the density of the solution is
$\mathrm{V}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{V}_{\mathrm{i}}$
$\mathrm{m}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{m}_{\mathrm{i}}$
$\rho_{\text {solution }}=\frac{\mathrm{m}}{\mathrm{V}}$
Where n is a number of components

## Specific Gravity (SG)

The SG of a substance is the ratio of the density ( $\rho$ ) of the substance to the density of a reference substance ( $\rho_{\text {ref }}$ ) at a specific condition:

SG of $A=\frac{\rho}{\rho_{\text {ref }}}=\frac{\left(\mathrm{g} / \mathrm{cm}^{3}\right)_{\mathrm{A}}}{\left(\mathrm{g} / \mathrm{cm}^{3}\right)_{\text {ref }}}=\frac{\left(\mathrm{kg} / \mathrm{m}^{3}\right)_{\mathrm{A}}}{\left(\mathrm{kg} / \mathrm{m}^{3}\right)_{\text {ref }}}=\frac{\left(\mathrm{lb} / \mathrm{ft}^{3}\right)_{\mathrm{A}}}{\left(\mathrm{lb} / \mathrm{ft}^{3}\right)_{\text {ref }}}$

- The reference substance for liquids and solids normally is water.
- The density of water is $1.000 \mathrm{~g} / \mathrm{cm}^{3}, 1000 \mathrm{~kg} / \mathrm{m}^{3}$, or $62.43 \mathrm{lb} / \mathrm{ft}^{3}$ at $4^{\circ} \mathrm{C}$.
- The specific gravity of gases frequently is referred to air, but may be referred to other gases.

For Example If dibromopentane (DBP) has a specific gravity of 1.57, what is the density in (a) $\mathrm{g} / \mathrm{cm}^{3}$ ? (b) $\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$ ? and (c) $\mathrm{kg} / \mathrm{m}^{3}$ ?
a) $\frac{1.57 \frac{\mathrm{~g} \mathrm{DBP}}{\mathrm{cm}^{3}}}{1 \frac{\mathrm{HzO}}{\mathrm{cm}^{3}}} \left\lvert\, 1 \frac{\mathrm{~g} \mathrm{H2O}}{\mathrm{~cm}^{3}}=1.57 \frac{\mathrm{~g} \mathrm{DBP}}{\mathrm{cm}^{3}}\right.$
b) $\frac{1.57 \frac{\mathrm{lb} \mathrm{DBP}}{\mathrm{ft}^{3}}}{1 \frac{\mathrm{lta}^{3}}{\mathrm{ft}^{3}}} \left\lvert\, 62.4 \frac{\mathrm{lb} \mathrm{H} 2 \mathrm{O}}{\mathrm{ft}^{3}}=97.97 \frac{\mathrm{lb} \mathrm{DBP}}{\mathrm{ft}^{3}}\right.$
c) $1.57 \frac{\mathrm{~g} \mathrm{DBP}}{\mathrm{cm}^{3}}\left|\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3}\right| \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=1.57 * 10^{3} \frac{\mathrm{~kg} \mathrm{DBP}}{\mathrm{m}^{3}}$

The specific gravity of petroleum products is often reported in terms of a hydrometer scale called ${ }^{\circ} \mathrm{API}$. The equation for the API scale is
${ }^{\mathrm{o}} A P I=\frac{141.5}{S G\left(\text { at } 60{ }^{\circ} \mathrm{F}\right)}-131.5$

Or,

SG $\left(\right.$ at $\left.60{ }^{\circ} \mathrm{F}\right)=\frac{141.5}{\varrho^{\circ} A P I+131.5}$

The volume and therefore the densityof petroleum products vary with temperature, and the petroleum industry has established $60^{\circ} \mathrm{F}$ as the standard temperature for volume and API gravity.

## Example 11

5,000 barrels of $28^{\circ}$ API gas oil are blended with $20,000 \mathrm{bbl}$ of $15^{\circ} \mathrm{API}$ fuel oil. What is the density of the mixture in $\mathrm{lb} / \mathrm{gal}$ and $\mathrm{lb} / \mathrm{ft}^{3}$ ? Assume that the volumes are additive. Given that $1 \mathrm{bbl}=42 \mathrm{gal}, 1 \mathrm{ft}^{3}=7.48 \mathrm{gal}$ and the density of water at $60^{\circ} \mathrm{F}$ is $0.999 \mathrm{~g} / \mathrm{cm}^{3}$.

## Solution

$\rho_{\text {mix }}=\frac{\mathrm{lb} \text { of } 28^{\circ} \text { oil }+\mathrm{lb} \text { of } 15^{\circ} \text { oil }}{\text { total volume }}=\frac{\mathrm{lb} \text { of } 28^{\circ} \text { oil }+\mathrm{lb} \text { of } 15^{\circ} \text { oil }}{5000+20,000 \text { bbl }}$
$\mathrm{SG}_{\left(28^{\mathrm{o}} \mathrm{API}\right)}=\frac{141.5}{28+131.5}=0.887 ; \quad \rho_{28^{\circ} \mathrm{API}}=0.887 * 62.4=55.36 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$
$\mathrm{SG}_{(15 \mathrm{O} \text { API })}=\frac{141.5}{15+131.5}=0.966 ; \quad \rho_{15^{\circ} \mathrm{API}}=0.966 * 62.4=60.27 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$
$\mathrm{V}_{28^{\mathrm{o}} \text { API }}=5000 \mathrm{bbl}\left|\frac{42 \mathrm{gal}}{1 \mathrm{bbl}}\right| \frac{1 \mathrm{ft}^{3}}{7.481 \mathrm{gal}}=2.807 * 10^{4} \mathrm{ft}^{3}$

$$
\begin{aligned}
& \mathrm{V}_{15^{\mathrm{o}} \mathrm{API}}=20,000 \mathrm{bbl}\left|\frac{42 \mathrm{gal}}{1 \mathrm{bbl}}\right| \frac{1 \mathrm{ft}^{3}}{7.481 \mathrm{gal}}=1.123 * 10^{5} \mathrm{ft}^{3} \\
& \rho_{\text {mix }}=\frac{\left(55.36 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}\right) *\left(2.807 * 10^{4} \mathrm{ft}^{3}\right)+\left(60.27 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}}\right) *\left(1.123 * 10^{5} \mathrm{ft}^{3}\right)}{2.807 * 10^{4}+1.123 * 10^{5} \mathrm{ft}^{3}}=59.29 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}} \\
& =7.93 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{gal}}
\end{aligned}
$$

