Lecture- 3

# Fluid and Electrolyte Management of the Surgical Patient

دوليد نصار الجفال

# **Objectives**

- 1. To understand the percentage and composition of body fluids.
- 2. To understand the function of body fluids.
- 3. To understand the types and manifestations of electrolytes disturbances.

Fluid and electrolyte management is paramount to the care of the surgical patient.

# **Body Fluids**

# Total Body Water

• 50-70% of total body weight is water. It varies according to age, sex, and lean body mass, 60% 0f body weight is water in males and 50% of body weight is water in females because females have more fat than male and fat contain little water.

# Fluid Compartments

- Total body water (TBW) is divided into three functional fluid compartments: plasma, extravascular interstitial fluid, and intracellular fluid.
- "Rule of thirds"
  - 2 thirds being intracellular
  - 1 third is extracellular.

The ECC is further subdivided into thirds by capillary membrane :

- 2 thirds is extravascular (interstitial)
- 1 third is intravascular,

The extracellular water comprises 20% of the total body weight and is divided between plasma (5% of body weight) and interstitial fluid (15% of body weight).

For 70 kg man total body water is 60%

So: 60%  $\times$  70kg =42L  $\rightarrow$  28Litres being intracellular and 14 litres is extracellular.

١

| % of Total body weight    | Volume of TBW        | Male (70 kg) | Female (60 kg) |
|---------------------------|----------------------|--------------|----------------|
| Plasma 5%                 | Extracellular volume | 14,000 mL    | 10,000 mL      |
| Interstitial<br>fluid 15% | Plasma               | 3500 mL      | 2500 mL        |
|                           | Interstitial         | 10,500 mL    | 7500 mL        |
|                           |                      |              |                |
| Intracellular             | Intracellular volume | 28,000 mL    | 20,000 mL      |
| volume 40%                |                      | 42,000 mL    | 30,000 mL      |
|                           |                      |              |                |
|                           |                      |              |                |

### **Composition of Fluid Compartments**

The extracellular fluid is high in Na and has low K concentrations and is balanced between sodium, the principal cation, and chloride and bicarbonate, the principal anions.

The intracellular fluid is high in K and has low in Na concentration and is comprised primarily of the cations potassium and magnesium, and the anions phosphate and proteins.

#### FLUID EXCHANGE BETWEEN BODY FLUID COMPARTMENTS

The movement of water across a cell membrane depends primarily on osmosis. To achieve osmotic equilibrium, water moves across a semipermeable membrane to equalize the concentration on both sides. This movement is determined by the concentration of the solutes on each side of the membrane. Osmotic pressure is measured in units of osmoles (osm) or milliosmoles (mOsm) that refer to the actual number of osmotically active particles. For example, 1 mmol of sodium chloride contributes to 2 mOsm (one from sodium and one from chloride). The principal determinants of osmolality are the concentrations of sodium, glucose, and urea (blood urea nitrogen, or BUN).

- > The osmolarity of plasma is 290-310mOsm/kg.
- Serum Osmolality =  $[2 \times Na] + [BUN/2.8] + [glucose/18]$
- The effective osmotic pressure depend on osmotically acive particles that do not freely pass between the smipermeable membranes of the body
- Proteins are responsible for the effective osmotic pressure between plasma and interstitial compartment(colloid osmotic pressure)

#### Normal Exchange of Fluid and Electrolytes

The healthy person consumes an average of 2000 mL of water per day, approximately 75% from oral intake and the rest extracted from solid foods. Daily water losses include 800 to 1200 mL in urine, 250 mL in stool, and 600 mL in insensible losses. Insensible losses of water occur through both the skin (75%) and lungs (25%), and can be increased by such factors as fever, hypermetabolism, and hyperventilation. Sensible water losses such as sweating or pathologic loss of GI fluids vary widely, but these include the loss of electrolytes as well as water.

# **Classification of Body Fluid Changes**

Disorders in fluid balance may be classified into three general categories: disturbances in (A) volume, (B) concentration, and (C) composition.

### **A)- Volume Disturbances**

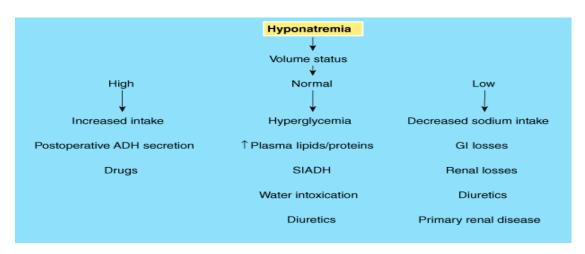
Disorders of volume can be classified into volume deficit and volume excess Extracellular volume deficit is the most common fluid disorder in surgical patients and can be either acute or chronic. Acute volume deficit is associated with cardiovascular and central nervous system signs, whereas chronic deficits display tissue signs, such as a decrease in skin turgor and sunken eyes, in addition to cardiovascular and central nervous system signs. The most common cause of volume deficit in surgical patients is a loss of GI fluids from nasogastric suction, vomiting, diarrhea, or enterocutaneous fistula. In addition, sequestration secondary to soft tissue injuries, burns, and intraabdominal processes such as peritonitis, obstruction, or prolonged surgery can also lead to massive volume deficits. Extracellular volume excess may be iatrogenic or secondary to renal dysfunction, congestive heart failure, or cirrhosis. Both plasma and interstitial volumes usually are increased.

|             | Signs and Symptoms of Volume Disturbances |                                   |  |
|-------------|-------------------------------------------|-----------------------------------|--|
| System      | Volume Deficit                            | Volume Excess                     |  |
| Generalized | Weight loss                               | Weight gain                       |  |
|             | Decreased skin turgor                     | Peripheral edema                  |  |
| Cardiac     | Tachycardia                               | Increased cardiac output          |  |
|             | Orthostasis/hypotension                   | Increased central venous pressure |  |
|             | Collapsed neck veins                      | Distended neck veins              |  |
|             |                                           | Murmur                            |  |
| Renal       | Oliguria                                  | —                                 |  |
|             | Azotemia                                  |                                   |  |
| GI          | Ileus                                     | Bowel edema                       |  |
| Pulmonary   | _                                         | Pulmonary edema                   |  |

#### Volume Control

Volume changes are sensed by both osmoreceptors and baroreceptors.

Osmoreceptors are specialized sensors that detect even small changes in fluid osmolality and drive changes in thirst and diuresis through the kidneys.


Baroreceptors also modulate volume in response to changes in pressure and circulating volume through specialized pressure sensors located in the aortic arch and carotid sinuses.

## **B)-** Concentration disturbances

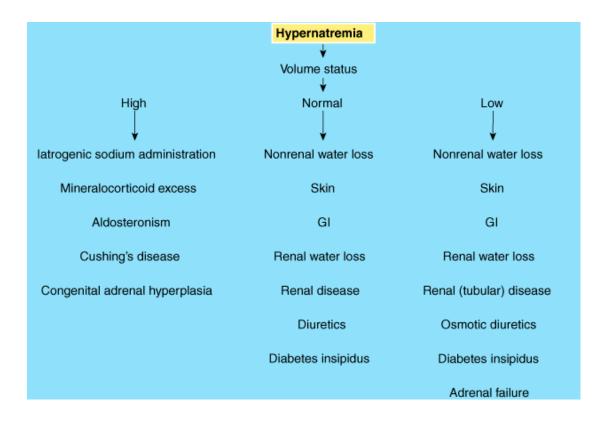
Changes in serum sodium concentration are inversely proportional to total body water (TBW). Therefore, abnormalities in TBW are reflected by abnormalities in serum sodium levels.

## Hyponatremia

A low serum sodium level occurs when there is an excess of extracellular water relative to sodium. Extracellular volume can be high, normal, or low.



Hyponatremia also can be seen with an excess of solute relative to free water, such as with untreated hyperglycemia or mannitol administration. Glucose exerts an osmotic force in the extracellular compartment, causing a shift of water from the intracellular to the extracellular space. Hyponatremia therefore can be seen when the effective osmotic pressure of the extracellular compartment is normal or even high. When hyponatremia in the presence of hyperglycemia is being evaluated, the corrected sodium concentration should be calculated as follows:


Lastly, extreme elevations in plasma lipids and proteins can cause pseudohyponatremia, because there is no true decrease in extracellular sodium relative to water.

| Clinical Manifestations |                                                                                |  |
|-------------------------|--------------------------------------------------------------------------------|--|
| Central nervous         | Headache, confusion, hyperactive or hypoactive deep tendon reflexes,           |  |
| system                  | seizures, coma, increased intracranial pressure                                |  |
| Musculoskeletal         | Weakness, fatigue, muscle cramps/twitching                                     |  |
| GI                      | Anorexia, nausea, vomiting, watery diarrhea                                    |  |
| Cardiovascular          | Hypertension and bradycardia if significant increases in intracranial pressure |  |
| Tissue                  | Lacrimation, salivation                                                        |  |
| Renal                   | Oliguria                                                                       |  |

**Treatment:** free water restriction and, if severe, the administration of sodium (3% normal saline), should be corrected slowly because rapid correction of hyponatremia can lead to pontine myelinolysis, with seizures, weakness, paresis, akinetic movements, and unresponsiveness, and may result in permanent brain damage and death.

#### Hypernatremia

Hypernatremia results from either a loss of free water or a gain of sodium in excess of water. Like hyponatremia, it can be associated with an increased, normal, or decreased extracellular volume



| Clinical Manifestations |                                                                       |  |
|-------------------------|-----------------------------------------------------------------------|--|
| Central nervous         | Restlessness, lethargy, ataxia, irritability, tonic spasms, delirium, |  |
| system                  | seizures, coma                                                        |  |
| Musculoskeletal         | Weakness                                                              |  |
| Cardiovascular          | Tachycardia, hypotension, syncope                                     |  |
| Tissue                  | Dry sticky mucous membranes, red swollen tongue, decreased saliva and |  |
|                         | tears                                                                 |  |
| Renal                   | Oliguria                                                              |  |
| Metabolic               | Fever                                                                 |  |

*Treatment:* Treatment of the associated water deficit. In hypovolemic patients, volume should be restored with normal saline before the concentration abnormality is addressed. Once adequate volume has been achieved, the water deficit is replaced using a hypotonic fluid such as 5% dextrose, 5% dextrose in  $^{1}/_{4}$  normal saline, or enterally administered water.

The rate of fluid administration should be titrated to achieve a decrease in serum sodium concentration of no more than 1 mEq/h and 12 mEq/d for the treatment of acute symptomatic hypernatremia. because overly rapid correction can lead to cerebral edema and herniation.

#### **C)- Composition Changes:**

#### Hyperkalemia

*Hyperkalemia* is defined as a serum potassium concentration above the normal range of 3.5 to 5.0 mEq/L.

| Etiology of Hyperkalemia |                                                                                   |  |  |
|--------------------------|-----------------------------------------------------------------------------------|--|--|
| Hyperkalemia             |                                                                                   |  |  |
| Increased intake         |                                                                                   |  |  |
| Potassium suppler        | Potassium supplementation                                                         |  |  |
| Blood transfusions       | S                                                                                 |  |  |
| Endogenous load/         | destruction: hemolysis, rhabdomyolysis, crush injury, gastrointestinal hemorrhage |  |  |
| Increased release        |                                                                                   |  |  |
| Acidosis                 |                                                                                   |  |  |
| Rapid rise of extra      | acellular osmolality (hyperglycemia or mannitol)                                  |  |  |
| Impaired excretion       | Impaired excretion                                                                |  |  |
| Potassium-sparing        | g diuretics                                                                       |  |  |
| Renal insufficienc       | Renal insufficiency/failure                                                       |  |  |
| <b>Clinical Manif</b>    | estations                                                                         |  |  |
| System                   |                                                                                   |  |  |
| GI                       | Nausea/vomiting, colic, diarrhea                                                  |  |  |
| Neuromuscular            | Weakness, paralysis, respiratory failure                                          |  |  |
| Cardiovascular           | Arrhythmia, arrest                                                                |  |  |
| Renal                    | —                                                                                 |  |  |
| ECG changes              | high peaked T waves (early), widened QRS complex, flattened P wave,               |  |  |
|                          | prolonged PR interval (first-degree block), sine wave formation, and ventricular  |  |  |
|                          | fibrillation.                                                                     |  |  |

#### Treatment:

- Identify and treat cause
- 10 20 mL intravenous 10% calcium chloride over 10 min in patients with ECG abnormalities (reduced risk of ventricular fibrillation)
- 50 mL 50% dextrose plus 10 units short acting insulin over 2-3min (Monitor plasma glucose and K+ over next30-60 min)
- Bicarbonate 1 ampule IV
- Regular Salbutomol nebulizers
- Consider oral or rectal calcium Resonium (ion exchange resin), although this is more effective for non-acute hyperkalaemia.
- Haemodialysis for persistent hyperkalemia

## Hypokalemia

Hypokalemia is much more common than hyperkalemia in the surgical patient.

| Etiology of Hypokalemia                                                                |  |  |
|----------------------------------------------------------------------------------------|--|--|
| Inadequate intake                                                                      |  |  |
| Dietary, potassium-free intravenous fluids, potassium-deficient TPN                    |  |  |
| Excessive potassium excretion                                                          |  |  |
| Hyperaldosteronism                                                                     |  |  |
| Medications                                                                            |  |  |
| GI losses                                                                              |  |  |
| Direct loss of potassium from GI fluid (diarrhea)                                      |  |  |
| Renal loss of potassium (gastric fluid, either as vomiting or high nasogastric output) |  |  |
| intracellular shifts from metabolic alkalosis or insulin therapy                       |  |  |

| Clinical Manifestations |                                          |  |
|-------------------------|------------------------------------------|--|
| GI                      | Ileus, constipation                      |  |
| Neuromuscular           | Decreased reflexes, fatigue, weakness,   |  |
|                         | paralysis                                |  |
| Cardiovascular          | Arrest                                   |  |
| ECG changes             | U waves, T-wave flattening, ST-segment   |  |
|                         | changes, and arrhythmias (with digitalis |  |
|                         | therapy)                                 |  |

#### Treatment:

potassium repletion, the rate of which is determined by the symptoms. Oral repletion is adequate for mild, asymptomatic hypokalemia.

If IV repletion is required, usually no more than 10 mEq/h is advisable in an unmonitored setting. This amount can be increased to 40 mEq/h when accompanied by continuous ECG monitoring, and even more in the case of imminent cardiac arrest from a malignant arrhythmia associated hypokalemia. Caution should be exercised when oliguria or impaired renal function is coexistent.